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Induction UNIT 4  MATHEMATICAL INDUCTION    

 

Structure  

 

4.0  Introduction 

4.1  Objectives 

4.2  The Principle of Mathematical Induction 

4.3  Answers to Check Your Progress 

4.4  Summary 

 

4.0  INTRODUCTION 

 

We begin with the following question.  What is the sum of first n odd natural 

numbers ? 

 

If n equals 1, the sum equals 1, as  1 is the only summand.  The answer we seek is 

a formula that will enable us to determine this sum for each value n without 

having to add the summands. 

 

Table 4.1 lists the sum Sn  of  the first n odd natural numbers, as n takes values 

from 1 to 10. 

Table 4.1 

  n Series Sum (Sn) 

1 1 1=1
2
 

2 1+3 4=2
2
 

3 1+3+5 9=3
2
 

4 1+3+5+7 16=4
2
 

5 1+3+5+7+9 25=5
2
 

6 1+3+5+7+9+11 36=6
2
 

7 1+3+5+7+9+11+13 49=7
2
 

8 1 +3 +……..+15 64=8
2
 

9 1 +3 +……..+17 81=9
2
 

10 1 +3 +……..+19 100=10
2
 

 

Jumping to a Conclusion 

 

Judging from the pattern formed by first 10 sums, we might conjecture that  

Sn  =  1 + 3 + 5 + ... + (2n – 1) = n
2
. 

Recognizing a pattern and then simply jumping to the conclusion that the pattern 

must be true for all values of n is not a logically valid method of proof in 
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mathematics.   There are many instances when the pattern appears to be 

developing for small values of n and then at some point the pattern fails. Let us 

look at one example. It was widely believed that Pn = n
2 

+ n + 41  is prime 

for all natural-numbers. Indeed pn, is prime for all values of n lying between 1 

and 39 as shown in Table 4.2. 

 

But the moment we take  n= 40, we get 

P40 = 40
2
 + 40 +41 

= 1600+40+41 = 1681 =41
2
 

which is clearly not a prime. 

Table 4.2 

n Pn n Pn n Pn 

1 43 11 173 26 743 

  12 197 27 797 

2 47 13 223 28 853 

3 53 14 251 29 911 

  15 281 30 971 

4 61 16 313 31 1033 

5 71 17 347 32 1097 

  18 383 33 1163 

6 83 19 421 34 1231 

7 97 20 461 35 1301 

    36 1373 

8 113 21 503 37 1447 

9 131 22 547 38 1523 

  23 593   

10 151 24 641 39 1601 

  25 691   

 

Just because a rule, pattern or formula seems to work for several values of n, we 

cannot simply conclude that it is valid for all values of n without going through a 

legitimate proof. 

How to Legalize a Pattern? 

One way to legalize the pattern is to use the principle of Mathematical 

induction. To see what it is, let us return to our question in the beginning of the 

chapter. What is the sum of first n odd natural numbers? 
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We have already seen that the formula 

Sn = 1 + 3 + 5 + ... + (2n – 1) = n
2
 is valid for n= 1, 2, 3, ..., 10                         (1)  

Do we need to compute Sn  by adding the first n  odd natural numbers ?                

A moment’s reflection will show that it is not necessary. 

 

Having obtained the value of Sn   for some integer n, we can obtain the value of  

Sn+1 =  Sn +  2n + 1 

if Sn = n
2
  for some n, then  Sn+1 = Sn + 2n + 1 = n

2
 +2n+1 = (n+1)

2
. 

 

That is, if Sn = n
2  

 for some natural  number n, then the formula holds for the next 

natural number n + 1. 

 

Since the formula Sn = n
2
  holds for n = 10, therefore it must hold n = 11.   Since, 

it  holds for n = 11,  therefore, it must hold for n = 12.   Since, it holds for n = 12, 

it holds for n = 13, and so on.  The principle underlying the foregoing argument is 

nothing but the principle of mathematical induction.  We state this formally in 

section 4.3. 

  

4.1   OBJECTIVES 

 

After studying this unit, you should be able to:  

 use the principle of mathematical induction to establish truth of several 

formulae and inequalities for each natural number n. 

 

4.2   THE PRINCIPLE OF MATHEMATICAL INDUCTION 

 

Let Pn be a statement involving the natural number n.  If 

1.  P1  is true, and 

2. the truth of Pk implies the truth of Pk+1, for every interger k, then Pn must be 

true all natural numbers n. 

In other words, to prove that a statement Pn holds for all natural numbers, we 

must go through two steps;    First, we must prove that P1  is ture.  Second, we 

must prove that Pk+1 is true whenever Pk is true. 

 

 

 

An Analogue 

 

                      Just proving  Pk+1 whenever Pk is true will not work. 

 

CAUTION 
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There is an interesting analogue.  Suppose we have “sequence” of dominoes 

standing in a row, as in Fig. 4.1 Suppose (1) the first domino falls, and (2) 

whenever any domino falls, then the one next to it (to the right in Fig. 4.2) falls as 

well.  Our conclusion is that each domina will fall (see Fig 4.3).   This reasoning 

closely parallels the ideal of induction. 

 

To apply the principles of mathematical induction, we always need to be able to 

find Pk+1 for a given Pk .  It is important to acquire some skill in writing Pk+1 

whenever Pk is given. 

 

We now take up some illustrations in which we write some particular terms when 

we know Pn. We also take up some illustrations in which we write Pk+1 when we 

know Pk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Illustration 1 : If Pn is the statement “n(n + 1) is even”., then what is P4  ?   What 

is P10  ? 

 

Solution : 

P4  is the statement “4(4+1) is even”, i.e., “20 is even”.   P10   is the statement 

“10(10+1) is even” i.e., “110 is even”. 

 

 

Figure 4.1 

Figure 4.2 

Figure 4.3 
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Ilustration 2 :  If Pn is the statement “n(n + 1)(n + 2) is divisible by 12”, write P3, 

P4 and P5 .   Which one of P3, P4 and P5 are true statement ? 

 

Solution  

 

P3 is “3 (3+1) (3+2) is divisible by 12” i.e., “60 is divisible by 12” 

P4 is “4 (4+1) (4+2) is divisible by 12” i.e., “120 is divisible by 12” 

P5 is “5 (5+1) (5+2) is divisible by 12” i.e., “210 is divisible by 12” 

 

Each of P3 and P4 is true.  But P5 is false. 

 

Example 1   

(i)  If Pn is the statement “n
3
+ n is divisible by 3”, is the statement P3 true ?  Is 

the statement P4  true ? 

(ii)   If Pn is the statement “2
3n

 –1 is an integral multiple of 7”, prove that  P1, P2 

and P3 are true ? 

(iii)   If  P1 is the statement “3
n 
> n” are true P1, P2 and P4  true statements ? 

(iv)  If  Pn is the statement “2
n 
> n” what is Pn+1 ? 

(v)   If  Pn is the statement “3
n  

> n” prove that Pn+1 is true whenever Pn is true. 

(vi)   Let Pn is the statement “ n
2  

> 100” prove that Pk+1 is true whenever Pk  is 

true. 

(vii)  If  Pn is the statement “2
n 
> 3n” and if Pk  is true, prove that Pk+1 is true. 

(viii)  If Pn is the statement “2
3n 

– 1 is a multiple  of  7”, prove that truth of Pk  

implies the true of Pk+1. 

(ix)   If Pn  is the statement “10
n+1 

> (n + 1)
5
”, prove that Pk+1 is true whenever Pk 

is true. 

(x)   Give an example of a statement Pn,  such that P3 is true but P4 is not true. 

(xi)  Give an example of statement Pn  such that it is not true for any n. 

(xii)  Give an example of a statement Pn  in which P1, P2, P3 are not true but P4 is 

true. 

(xiii)  Give an example of a statement Pn which is true for each n. 

   

Solution : 

(i) P3 is the statement “3
3
 + 3 is divisible by 3” i.e., “30 is divisible by 3”. 

which is clearly true. 

P4 is the statement “4
3
 + 4 is divisible by 4” i.e., “68 is divisible by 3” 

This is clearly not true. 

(ii) P1 is the statement “2
3
 – 1 is an integral multiple of 7”, i.e., “7 is an 

integral multiple of 7”.    This is a true statement. 
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P2 is the statement “2

6
 – 1 is an integral multiple  of 7”, i.e., 63 is an 

integral multiple of 7”.  This also is a true statement. 

P3 is the statement “2
9
– 1 is an integral multiple of 7”, i.e., “511 is an 

integral multiple of 7”.  This again is a true statement. 

(iii) P1 is 3
1 

> 1”,  which is clearly true. 

P2 is “3
2 
> 2”.   This also is a true statement. 

P4 is “3
4 

> 4”.  This again is a true statement. 

(iv) Pn+1 is the statement “2
n+1  

>  n+1”. 

(v) We are given that 3
n 

> n. 

we are interested to show that 3
n + 1 

> n +1 

 

  n + 1 < 3n < 3.3
n
 = 3

n+1
. 

This show that if Pn is true, then Pn+1 is true. 

(vi)  We are given that     k
2
 >100. 

we wish to show that    (k+1)
2
 >100 

we have  

(k + 1)
2
 = k

2
 + 2k + 1 > k

2
 >100                     [2k+1 >0 ] 

   (k+1)
2
 >100. 

This shows that Pk+1 is true whenever Pk is true. 

(vii) Since Pk is true, we get   2
k
 > 3k. 

we wish to show that    2
k+1  

 > 3(k+1) 

we have   

2
k+1 

= 2.2
k
 = 2

k
 +2

k
 > 3k + 3k                  [by assumption] 

      > 3k +3 

     2
k+1

 > 3(k+1) 

this proves that  Pk+1 is true. 

 

(viii) Since Pk is true we have 2
3k

 –1 is a multiple of 7, i.e., there exists an 

integer m such that 2
3k

 –1 = 7m 

We wish to show that 2
3(k+1)

 –1 is a multiple of 7. 

We have  

   2 
3(k+1)

 – 1 = 2
3k

 .   2
3
 – 1 = (7m+1). (8) –1 

     = 56 m + 8 – 1 = 56 m + 7 = 7(8m + 1) 

This shows that 2
3(k+1)

 –1 is a multiple of 7, i.e.  Pk+1 is true. 
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(ix)  Since Pk is true, we have 10

k+1
 > (k+1)

5
 

We wish to show that 10
k+2

 >(k+2)
5
 

We have  

 

 

 

 

 

Thus,     (k+2)
5
 < 10 (k+1)

5
 < 10.10

k+1 
= 10

k+2
. 

Therefore, Pk+1 is true. 

(x)  Let Pn be that statement “n ≤ 3”, then P3 is true but P4 is not true. 

(xi)  Let Pn be the statement “n (n+1) is odd”. Then Pn is false for every n. 

(xii) Let Pn n ≥ 4. 

(xiii) Let Pn be the statement “n ≥ 1”.  The Pn is true for each n. 

 

Example 2:  Use the principle of mathematical induction to prove that  

  2 + 4 + 6 + ……………… + 2n = n(n+1) 

for each natural number n. 

Solution : 

Mathematical induction consists of two distinct parts.  First, we must show that 

the formula holds for n = 1. 

Let Pn denote the statement 

2 + 4 + 6 + ……………… + 2n = n(n+1) 

Step 1.   When n =1, Pn becomes 2 = 1(1+1) 

which is clearly true. 

The second part of mathematical induction has two steps.  The first step is to 

assume that the formula is valid for some integer k. The second step is to use this 

assumption to prove that formula is valid for the next natural number k+1. 

Step 2.  Assume that Pk is true for some k N, that is, assume that  

2 + 4 + 6 + ……………… + 2k = k (k + 1) 

  is true.   We must show that Pk+1 is true, where Pk+1 

2 + 4 + 6 + ……………… + 2k + 2 (k + 1) = (k + 1)(k + 2)        (1) 
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Not to Forget 

While writing LHS of Pk+1,   you must remember that not only should you write 

the last term of the series, but also a term prior to the last term.  If you, now 

supress the last term of the LHS of Pk+1 what remain of the LHS of Pk. 

 

LHS of (1) = 2 + 4 + 6 + ……………… + 2k + 2 (k + 1) 

= k (k + 1) + 2(k+1)                                             [induction assumption] 

= (k + 1) (k + 2)             [taking k +1 common] 

= RHS of (1) 

 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so our statement is true for each natural number n. 

  

                                    

 

   

  Example 3    Use the principle of mathematical induction to show that  

                 1+ 4 + 7 +…………………+(3n 2) = n(3n 1) 

    for every natural number n. 

 

Solution :   Let Pn denote the statement. 

    1+4+7+…………………(3n 2) = n (3n 1) 

When n = 1, Pn becomes 1 =  (1)[3(1)  1] or 1 = 1 

which is clearly true. 

This shows that the result holds n = 1. 

Assume that Pk is true for some k N.  That is, assume that 

 1 + 4+ 7+…………………(3k – 2) =  k (3k –1) 

We shall now show that the truth of Pk implies the true of Pk +1 where Pk +1 is  

1 + 4 + 7 +………………+ (3k 2) + {3(k + 1) – 2} =   

or 1 + 4 + 7 +………………+ (3k 2)+ (3k+1)  =  k + 1) (3k + 2)                (1) 

LHS of (1) 

=   1 +  4 +  7+…………………+ (3k 2) + (3k + 1)   

 

 

 
                               You will lose at least one mark if you do not write this last paragraph. 

CAUTION 
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This shows that the result holds for n = k + 1; therefore, the truth of Pk implies the 

truth of Pk +1.  The two steps required for a proof by mathematical induction have 

been completed, so our statement is true for each natural number n. 

Example 4 : Use the principle of mathematical induction to prove that  

  

Solution:   Let Pn denote the statement    

 

  When n = 1, Pn becomes   

 

This shows that the result holds for n = 1. Assume that Pk is true for some k N.  

That, is assume that  

 

We shall now show that the truth of Pk implies the truth of Pk+1 where Pk+1 is  

 

LHS of (1) 

= 1
3
 + 2

3
+ …………….k

3
 =

 
+ (k + 1)

3
       

 

 

 

= RHS of (1) 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of  Pk+1.  The two steps required for a proof by mathematical induction have 

been completed, so our statement is true for each natural number n. 
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Example 5 : Use the principle of mathematical induction to prove that 

 

  for every natural number n. 

 

Solution:  Let Pn   denote the statement 

 

 

 

This shows that the result holds for n = 1. Assume that Pk is true for some k N.  

That, is assume that  

 

 

We shall now show that the true of Pk implies the truth of Pk+1 where Pk+1 is  

 

 

 

               

 

 

 

                   = RHS of (1)   

 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of  Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so our statement is true for each natural number n. 

 

Example  6 :  Use the principle of mathematical induction to show that  

2 + 2
2
 + ………….. + 2

n
  = 2

n+1
 –  2 

 for every natural number n. 
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Solution :   Let Pn denote the statement  

 

2 + 2
2
 + …………..+ 2

n
  = 2

n+1
  – 2 

 

When n = 1, Pn becomes  

2 = 2
1+1 

– 2  or 2 = 4 –  2 

This shows that the result holds for n = 1. 

Assume that Pk is true for some k N. 

That is, assume that  

     2 + 2
2
 + ………. + 2

k 
= 2 

k +1
  – 2 

 

We shall now show that truth of Pk implies the truth of Pk+1 is   

 

2 + 2
2
 + ………. + 2

k 
+

 
2 

k +1
  = 2 

k +1
  – 2                                                 (1) 

 

LHS of (1) = 2 + 2
2
 + ……….+ 2

k 
+ 2 

k +1
   

=  (2
k+1

 – 2) + 2
k +1

        [induction assumption] 

=  2
k+1

 (1 + 1) – 2 

=  2
k+1 

2 –  2= 2
k +2

– 2   

=  RHS of (1) 

 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of  Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so our statement is true for each natural number n. 

Example 7:  Show that 2
3n

– 1 is divisible by 7 for every natural number n. 

Solution : Let Pn denote the statement 7|(2
3n

– 1) 

 

For  n = 1, Pn  becomes 7|(2
3
– 1) 

 

Since 2
3
– 1 = 8–1 = 7, we have 7|7.  This shows that the result is ture for n = 1.   

Assume that Pk is true for some k N. 

That is, assume that 7 | (2
3k

 – 1) 

That is, assume that 2
3k

 – 1 = 7m for some m N. 

We shall now that that the truth of Pk implies the truth of Pk + 1, where Pk + 1 is  

7(2
3(k+1)

 – 1) 

Now  

2
3(k+1)

 –1  = 2
3k+3

 – 1 = 2
3k

. 2
3
 –1  

= (7m + 1)(8) – 1                         [2
3k

 –1 = 7m] 

= 56m + 8  – 1 = 56m +7 = 7(8m+1) 

        7|[2
3(k+1)

 – 1 ] 
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This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so our statement is true for each natural number n. 

Example 8  Show that n(n+1) (2n+1) is a multiple of 6 for every natural number n. 

Solution :  Let Pn denote the statement n(n + 1) (2n + 1) is a multiple of 6. 

When n =1, Pn becomes 1(1 + 1) ((2)(1) + 1) = (1)(2)(3) = 6 is a multiple of 6. 

This shows that the result is true for n = 1. 

 

Assume that Pk is true for some k N.  That is assume that k(k + 1) (2k + 1) is a 

mutliple of  6. 

Let   k (k + 1)(2k + 1) = 6 m for some m N. 

We now show that the truth of Pk implies the truth of Pk+1, where Pk+1 is  

(k + 1)(k + 2) [2(k + 1) + 1] = (k + 1)(k + 2) (2k + 3) is a multiple of 6. 

 

We have 

(k + 1) (k + 2) (2k + 3) 

= (k + 1) (k  + 2) [(2k + 1) + 2] 

= ( k + 1) [k (2k + 1) + 2(2k+1) + 4)] 

= ( k + 1) [k (2k + 1) + 6 (k + 1)] 

= k (k + 1) (2k + 1) + 6 (k + 1)
2
 

= 6m + 6 (k + 1)
2
 = 6[m + (k + 1)

2
] 

 

Thus (k + 1) (k + 2) (2k + 3) is multiple of 6. 

 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so our statement is true for each natural number n. 

Example 9 :  Show that 11 divides 10
2n–1

 + 1 for every natural number n. 

Solution  :  Let Pn denote the statement  

11|(10
2n–1

 +1). 

When n = 1, Pn becomes 11|(10
2–1

 + 1). 

As 10
2 – 1

 + 1 = 10 + 1 = 11 we have 11|11. 

This shows tht the result is true for n = 1 
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Assume that Pk is true for some k N.  That is, assume that  

11(10
2 k–1

 + 1). 

That is,  assume that 10
2k–1

 + 1 = 11 m for some m N. 

 

We shall now that the truth of Pk implies Pk+1, where Pk+1 is  

11(10
2(k+1) – 1

 + 1) 

Now, 10
2(k+1) – 1

 + 1  =  10
2k + 2 – 1

 + 1 

=  10
2k – 1

 
+ 2

  + 1 = 10
2k–1

 . 10
2 
 

=  (11m –1 ) 10
2
 + 1               [10

2k–1
  +  1 = 11m] 

=  1100 m – 100 + 1 = 1100 m – 99 = 11(100m – 9) 

       11 | (10
2(k+1)

 
– 1

 + 1). 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of Pk+1.   The two steps required for a proof   by mathematical induction 

have been completed, so our statement is true for each natural number n. 

Example 10  Show that 133 divides 11
n+2

 + 12
2n+1

 for every natural number n. 

Solution  Let Pn denote the statement 

    133|(11
n + 2

 + 12
2n + 1

) 

When n = 1, Pn  becomes 133|(11
1+ 1

 + 12
2+ 1

) . 

As  11
1+2

 + 12
2+1  

   = 11
3
 + 12

3
 = 1331 + 1728 = 3059 

       =  (133) (29), we have 133| (11
1+2

 + 12
2+1

)
  
  

This shows that the result is true for n = 1.  Asumme that Pk is true for some         

k N.  That is assume that  

133|(11
k+2

 + 12
2k+1

) 

That is, assume that 11
k+2

 + 12
2k+1 

= 133m for some m N.  We shall now show 

that the truth of Pk implies the truth of Pk+1, where Pk+1 is 

   133 | (11
k + 1+  2

 + 12 
(2k + 2 + 1)

) 

Now,      11
k +1 + 2

 + 12
(2k + 2 + 1)

 

    =  11
k + 2

 11
2
 + 12 

2k + 1
  12

2  

    =  11
k + 2

 11 + (133m – 11 
2k + 1

) 12
2    

   [by induction assumption] 

    = 11
k + 2

 11 + (133m)(144)  – (11 
k + 2

) (144) 

    = 133(144m) – 133(
  
11

k+2
) 

    = 133(144m – 
 
11 

k+2 
) 

Thus, 133 | (11 
k + 1 + 2 

 + 12 
2(k  + 1) +  1

) 



 

102  

Algebra - I 

 
This shows that the result holds for n = k + 1; therefore, the truth of Pk implies the 

truth of  Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so Pn is true for each n N.    

Example 11 :  Show that 14 | (3
4n – 2

 + 5
2n  – 1

) for all natural number n. 

 

Solution :   Let Pn denote the statement 14 | (3
4n – 2

 + 5
2n – 1

). 

    For n =1, we have 

    3
4n – 2

  +  5
2n – 1 

= 3
2 

+ 5 = 14  which is divisible by 14. 

Assume that Pn is true for some natural number n, say k.  That is, assume that  

14 | (3
4k – 2

 + 5
2k – 1

) is true  for some natural number k.   Suppose 3
4k –2

 + 5
2k–1

= 

14m for some natural number m.  We now show that the truth of Pk implies the 

truth of Pk+1, that is, we show that 14|[(3
4(k + 1)-2

 + 5
2(k + 1)-1

)]. 

We have  

  =  3
4(k+1)–2

  +  5
2(k+1)–1  =  

3
4k–2. 

3
4
 + 5

2k–1
5

2 

  = (14 m 5
2k–1

 ).
. 
3

4
 + 5

2k–1 . 
5

2               
[3

4k – 2
= 14m –

 
 5

2k–1
]
 

  
= (14 m– (81)

 
+ 5

2k-1
  ( –81+25)  

  
=

 
(14m) (81)

 – 5
2k-1

)(56) = 14[81m – 4.5
2k-1

] 

  14 | [3
4(k+1) – 2 

+ 5
2(k+1) – 1

] 

This shows that the result holds for n = k+1; therefore, the truth of Pk implies the 

truth of  Pk+1.  The two steps required for a proof  by mathematical induction have 

been completed, so our statement is true for each natural number n. 

Check Your Progress – 1 

Use the principle of mathematical induction to prove the following formulae. 

1. 1 + 3 + 5+………………+ (2n–1) = n
2
                                                n  N 

 

 

4. 1(2
2
) + 2 (3

2
) + …………………………. + n (n + 1)

2
       n € N 

5. 8|(3
n
–1)                    n € N 

6. 24| (5
2n–1)                     n N 

 

8. 1 + 2+………………+n <( 2n + 1)2                                 n  N 
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Check Your Progress – 1 

1. Let Pn denote the statement  

 1 + 3 + 5 +………………+ (2n – 1) = n
2
                            

 For n = 1, Pn becomes 1 = 1
2
  or 1=1  which is clearly true. 

 Assume that Pk is ture for   k  N 

 That is, assume that  

 1 + 3 + 5 +………………+ (2k – 1) = k
2
        

 For n = k + 1, we have 

 Pk+1 : 1 + 3+……………+(2k – 1) + (2k + 1) = (k + 1)
2
          

 Now,  

 1 + 3 + ………..+ (2k – 1) + (2k+1) 

 =   k
2
 + (2k + 1)              [by induction assumption] 

 =  (k + 1)
2
    

 

2.  Clearly  result is true for n =1 .  Assume that result holds for n = k, that is, 

1
2 

+  2
2 
+…………………….+ k

2
 =  k (k + 1) (2k + 1) 

For n = k+1, 

LHS  = 1
2 

+  2
2 

+…………………….+ k
2
 + (k+1)

2
 

 

 

 

 

 

 

 

  The result holds for n = k + 1. 
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3. Result holds for n =1. 

Assume that  

 

      For n = k + 1, 

 

 

 

 

 

Result holds for n = k + 1. 

4. The result holds for n =1. 

Assume that  

1(2
2
)
 
+  2(3

2
)
 
+……………………+ k + (k + 1)

2 
= 

 

For n = k + 1. 

LHS   =  (1) (2)
2 

+………………..+  k (k + 1)
 2 

+ (k + 1) (k + 2)
 2

   

 

 

 

 

 

 

 

       The result holds for n = k+1. 
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5. The result holds for n = 1. 

Assume that 8|  for same k  N. 

Let    = 8m for some m   N. 

Next,  = (8m + 1) (9) – 1 

                            = 72m + 9 1 = 8 (9 m + 1) 

This shows that  8 | (  

The result holds for n = k+1. 

6. The result holds for n = 1 

    Assume 24|( for same k   N. 

  for same m   N. 

  For n = k+1, 

    =  

                     = (24m +1) (25) – 1  

                     = (24) (25) m + 25 – 1 

     = 24 (25m+1) 

 Thus, 24 ( ) 

 The result holds for n = k+1. 

 

       Assume that  

 

 

 

 The result holds for n = 1. 

8. The result holds for n = 1. 

 Assume that the result holds for n = k, that is , 

 1 + 2 + ……………. + k < (2k + 1)
2 

 
We have, 

 1 + 2 + ………….. + k + (k+1) 

 < (2k + 1)
2
 + (k + 1) 

 = 4k
2 

+ 4k  + 1 + k +1 

 < 4 k
2 

+ 12k + 9                               [ 7k + 7 > 0] 

 = (2k + 3)
2 

 Thus, the result holds for n = k + 1. 
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 4.4   SUMMARY 

 

The unit is for the purpose of explaining the Principle of Mathematical Induction, 

one of the very useful mathematical tools. A large number of examples are given 

to explain the applications of the principle. 

 

Answers/Solutions to questions/problems/exercises given in various sections of 

the unit are available in section 4.3. 

 


