

7

Object Oriented
Methodology - 1

UNIT 1 OBJECT ORIENTED
METHODOLOGY-1

Structure Page Nos.

1.0 Introduction 7
1.1 Objectives 7
1.2 Paradigms of Programming Languages 8
1.3 Evolution of OO Methodology 9
1.4 Basic Concepts of OO Approach 11
1.5 Comparison of Object Oriented and Procedure Oriented Approaches 15
1.6 Benefits of OOPs 18
1.7 Introduction to Common OO Language 19
1.8 Applications of OOPs 20
1.9 Summary 21
1.10 Solutions/ Answers 21

1.0 INTRODUCTION

Since the invention of the computer, many approaches of program development have
evolved. These include modular programming, top-down programming, bottom-up
programming and structured programming. The primary motivation in each case has
been the concern to handle the increasing complexity of programs to be reliable and
maintainable. These techniques became popular among programmers in 1970s and
1980s.

Due to the popularity of C language, structured programming became very popular
and was the main technique of the 1980s. Later this technique also failed to show the
desired performance in terms of maintainability, reusability and reliability.

As a result of this realisation, a new methodology known as Object oriented
programming emerges. This approach to program organization and development
attempts to eliminate some of the pitfalls of conventional programming by
incorporating the best of the structured programming features with several powerful
new concepts. This approach speeds the development of new programs, and, if
properly used, improves the maintenance, reusability, and modifiability of software.

So, the major concern for all of us is to know what it is. What are the main features of
this approach? How is it better than other approaches? What are the languages which
support its various features?

In this unit, we will start with a brief discussion of the manner in which different
languages have been developed so as to understand where an Object Oriented
programming language fits in. Subsequently, we compare the Object Oriented
approach with the procedure-oriented approach. We will also introduce the basic
concepts and terminology associated with the Object Oriented (OO) approach.
Finally we will talk about common OO languages and applications of OOP in various
problem domains.

1.1 OBJECTIVES

After going through this unit, you should be able to:

• find the importance of OO approach;
• define the basic concepts of OO approach;
• differentiate between object and procedure-oriented approaches;
• know about various OO languages;

Object Oriented
Technology and Java

• describe the applications of OOP, and
• understand the benefits of OO approach.

1.2 PARADIGMS OF PROGRAMMING
 LANGUAGES

The term paradigm describes a set of techniques, methods, theories and standards
that together represent a way of thinking for problem solving. According to [Wegner,
1988], paradigms are “patterns of thought for problem solving”.

Language paradigms were associated with classes of languages. First the paradigms
are defined. Thereafter, programming languages according to the different paradigms
are classified. The language paradigms are divided into two parts, imperative and
declarative paradigms as shown in the Figure 1. Imperative languages can be further
classified into procedural and object oriented approach. Declarative languages can
be classified into functional languages and logical languages. In Figure1 the
examples of languages in each category are also given.

Figure 1: Language Paradigms

Imperative paradigm: The meaning of imperative is “expressing a command or
order”, so the programming languages in this category specify the step-by-step
explanation of command. Imperative programming languages describe the details of
how the results are to be obtained, in terms of the underlying machine model. The
programs specify step by step the entire set of transitions that the program goes
through. The program starts from an initial state, goes through the transitions and
reaches a final state. Within this paradigm we have the procedural approach and
Object Oriented approach.

Procedural paradigm: Procedural languages are statement oriented with the
variables holding values. In this language the execution of a program is modeled as a
series of states of variable locations. We have two kinds of statements. Non-
executable statements allocate memory, bind symbolic names to absolute memory
locations, and initialize memory. Executable statements like computation, control
flow, and input/output statements. The popular programming languages in this
category are Ada, Fortran, Basic, Algol, Pascal, Cobol, Modula, C, etc.

Object Oriented paradigm: The Object Oriented paradigm is centered on the
concept of the object. Everything is focused on objects. Can you think what is an

Imperative
Paradigm

Language Paradigms

Declarative
Paradigm

Object
Oriented

Functional Logical Procedural

C++, Simula, Java C, Pascal Lisp Prolog

8

Object Oriented
Methodology - 1

object? We will discuss the concept of object in detail in further sections. In this
language, program consists of two things: first, a set of objects and second the way
they interact with each other. Computation in this paradigm is viewed as the
simulation of real world entities. The popular programming languages in this
paradigm are C++, Simula, Smalltalk and Java.

 Declarative paradigm: In this paradigm programs declare or specify what is to be
computed without specifying how it is to be achieved. Declarative programming is
also known as Value-oriented programming. Declarative languages describe the
relationships between variables in terms of functions and inference rules. The
language executor applies a fixed method to these relations to produce a desired
result. It is mainly it is used in solving artificial intelligence and constraint-
satisfaction problems. Declarative paradigm is further divided into two categories,
functional and logical paradigms.

Functional paradigm: In this paradigm, a program consists of a collection of
functions. A function just computes and returns a value. A program consists of
calling a function with appropriate arguments, but any function can make use of
other functions also. The main programming languages in this category are Lisp,
ML, Scheme, and Haskell.

Logic paradigm: In this paradigm programs only explain what is to be computed
not how to compute it. Here program is represented by a set of relationships,
between objects or property of objects known as predicate which are held to be true,
and a set of logic/clauses (i.e. if A is true, then B is true). Basically logic paradigm
integrates data and control structures. The Prolog language is perhaps the most
common example. Mercury language is a more modern attempt at creating a logic
programming language.

1.3 EVOLUTION OF OO METHODOLOGY

The earliest computers were programmed in machine language using 0 and 1. The
mechanical switches were used to load programs. Then, to provide convenience to
the programmer, assembly language was introduced where programmers use
pneumonic for various instructions to write programs. But it was a tedious job to
remember so many pneumonic codes for various instructions. Other major problem
with the assembly languages is that they are machine architecture dependent.

To overcome the difficulties of Assembly language, high-level languages came into
existence. Programmers could write a series of English-like instructions that a
compiler or interpreter could translate into the binary language of computers directly.

These languages are simple in design and easy to use because programs at that time
were relatively simple tasks like any arithmetic calculations. As a result, programs
were pretty short, limited to about a few hundred line of source code. As the capacity
and capability of computers increased, so did the scope to develop more complex
computer programs. However, these languages suffered the limitations of reusability,
flow control (only goto statements), difficulty due to global variables, understanding
and maintainability of long programs.

Structured Programming

When the program becomes larger, a single list of instructions becomes unwieldy. It
is difficult for a programmer to comprehend a large program unless it is broken down
into smaller units. For this reason languages used the concept of functions (or
subroutines, procedures, subprogram) to make programs more comprehensible.

A program is divided into functions or subroutines where each function has a
clearly defined purpose and a defined interface to the other functions in the program.
Further, a number of functions are grouped together into larger entity called a
module, but the principle remains the same, i.e. a grouping of components that carry

9

Object Oriented
Technology and Java

out specific tasks. Dividing a program into functions and modules is one of the major
characteristics of structured programming.

By dividing the whole program using functions, a structured program minimizes the
chance that one function will affect another. Structured programming helps the
programmer to write an error free code and maintain control over each function.
This makes the development and maintenance of the code faster and efficient.

Structured programming remained the leading approach for almost two decades. With
the emergence of new applications of computers the demand for software arose with
many new features such as GUI (Graphical user interface). The complexity of such
programs increased multi-fold and this approach started showing new problems.

The problems arose due to the fundamental principle of this paradigm. The whole
emphasis is on doing things. Functions do some activity, maybe a complex one, but
the emphasis is still on doing. Data are given a lower status. For example in banking
application, more emphasis is given to the function which collects the correct data in
a desired format or the function which processes it by doing some summation,
manipulation etc. or a function which displays it in the desired format or creates a
report. But you will also agree that the important part is the data itself.

The major drawback with structured programming are its primary components, i.e.,
functions and data structures. But unfortunately functions and data structures do not
model the real world very well. Basically to model a real world situation data should
be given more importance. Therefore, a new approach emerges with which we can
express solutions in terms of real world entities and give due importance to data.

Object Oriented programming

The world and its applications are not organized as functions and values separate
from one another. The problem solvers do not think about the world in this manner.
They always deal with their problems by concentrating on the objects, their
characteristics and behavior.

The world is Object Oriented, and Object Oriented programming expresses programs
in the ways that model how people perceive the world. Figure 2 shows different real
world objects around us which we often use for performing different functions. This
shows that problem solving using the objects oriented approach is very close to our
real life problem solving techniques.

Figure 2: Real world objects
The basic difference in Object Oriented programming (OOP) is that the program is
organized around the data being operated upon rather than the operations performed.
The basic idea behind OOP is to combine both, data and its functions that operate on
the data into a single unit called object. Now in our next section, we will learn about
the basic concepts used extensively in the Object Oriented approach.

10

Object Oriented
Methodology - 1

1.4 BASIC CONCEPTS OF OO APPROACH

Object Oriented methods are favored because many experts agree that Object
Oriented techniques are more disciplined than conventional structured techniques.
(Martin and Odell 1992)
The main components of Object Oriented technology are ‘objects and classes’, ‘data
abstraction and encapsulation’, ‘inheritance’ and ‘polymorphism’. It is very
important for you to understand these concepts. Further, in this unit you can find the
details of these concepts.

Objects Object

Data
+

Functions

Let’s start with “Object”. The first thing that we should do in the Object Oriented
approach is to start thinking in terms of Objects. The problem to be solved is divided
into objects. Start analyzing the problem in terms of objects and the nature of
communication between them. Program object should be chosen such that they match
closely with real-world objects. Let’s start creating objects using real-life things, for
example, the dog. You can create an object representing a dog, It would have data
like How hungry is it? How happy is it? Where is it? Now think what are the
different functions you can perform on a dog, like eat, bark, run and dig. Similarly,
the following can be treated as objects in different programming problems:

Fig. 3: Dog object
and its behavior

• Employees in a payroll system

• Customers and accounts in a banking system

• Salesman, products, customers in a sales tracking system

• Data structures like linked lists, stacks, etc.

• Hardware devices like magnetic tape drive, keyboard, printer etc.

• GUI elements like windows, menus, events, etc. in any window-based
application.

Each object contains data and the functions that operate on the data. Objects can
interact without having to know details of each other’s data or functions. It is
sufficient to know the type of message accepted and the type of response returned by
the object. For example, in the banking system, customer object may send a message
named as check balance to the account object to get the response, i.e. bank balance.
An Object Oriented system can be considered as network of cooperating objects
which interact by sending messages to each other. Let’s see in the Figure 4, how
objects interact by sending messages to one another.

Classes

Data

Function1

Function2

Data

Function1

Function2

Sending messages to
each other

Figure 4: Message Passing

Objects of the similar type can be grouped together to form a class. Can you tell to
which class dog belongs? Yes, of course, it belongs to the animal class. Now, let us
concentrate on the creation of objects. This can be easily answered if we look at the
way of creating any variable in common programming languages. Almost all
computer languages have built-in data types, for example integer, character, real,
boolean, etc. One can declare as many variables of any built-in type as needed in any

11

Object Oriented
Technology and Java

problem solution. In the similar way one can define many objects of the same class.
You can take a class as a type created by a programmer.

A class serves as a plan or template. The programmer has to specify the entire set of
data and functions for various operations on the data for an object as a user-defined
type in the form of a class. In other words, the programmer defines the object
format and behavior by defining a class. The compiler of that language does not
know about this user-defined data type. The programmer has to define the data and
functionality associated with it by designing a class.

Finally, defining the class doesn’t create an object just as the existence of a built-in
type integer doesn’t create any variable. Once the class has been defined, you can
create any number of objects belonging to that class.

A class is thus a collection of objects of similar type. For example, in a collection of
potatoes each individual potato is an object and belongs to the class potato.
Similarly, each individual car running on the road is an object, Collectively these cars
are known as cars.

Data abstraction and encapsulation

The wrapping up of data and functions into a single unit is known as encapsulation.
This is one of the strong features of the object oriented approach. The data is not
directly accessible to the outside world and only the functions, which are wrapped in
the class, can access it. Functions are accessible to the outside world. These
functions provide the interface to access data. If one wants to modify the data of an
object, s/he should know exactly what functions are available to interact with it. This
insulation of the data from direct access by the program is known as data hiding.

Abstraction refers to the act of representing essential features without including the
background details to distinguish objects/ functions from other objects/functions. In
case of structured programming, functional abstraction was provided by telling,
which task is performed by function and hiding how that task is performed. A step
further, in the Object Oriented approach, classes use the concept of data abstraction.
With data abstraction, data structures can be used without having to be concerned
about the exact details of implementation. As in case of built-in data types like
integer, floating point, etc. The programmer only knows about the various operations
which can be performed on these data types, but how these operations are carried out
by the hardware or software is hidden from the programmer. Similarly in Object
Oriented approach, classes act as abstract data types. Classes are defined as a set of
attributes and functions to operate on these attributes. They encapsulate all the
essential properties of the objects that are to be created.

Inheritance

Inheritance is the process by which objects of one class acquire the properties of
objects of another class in the hierarchy. For example, the scooter is a type of the
class two-wheelers, which is again a type of (or kind of) the class motor vehicles. As
shown in the Figure 5 the principle behind it is that the derived class shares common
characteristics with the class from which it is derived.

New classes can be built from the existing classes. It means that we can add
additional features to an existing class without modifying it. The new class is referred
as derived class or sub class and the original class is known as base class or super
class. Therefore, the concept of inheritance provides the idea of reusability. This
inheritance mechanism allows the programmer to reuse a class that is made almost,
but not exactly, similar to the required one by adding a few more features to it.

As shown in Figure 5, three classes have been derived from one base class. Feature A
and Feature B of the base class are inherited in all the three derived classes. Also,
each derived class has added its own features according to the requirement.
Therefore, new classes use the concept of reusability and extend their functionality.

12

Object Oriented
Methodology - 1

Feature A

Feature B

Feature A

Feature B

Feature C Feature A

Derived Class 3
Feature B

Feature D

Feature A

Feature B

Feature F

Base Class

Derived Class 1

Figure 5: Inheritance Derived Class 2

Polymorphism

Polymorphism means the ability to take more than one form of the same
property. For example, consider an addition operation. It shows a different behavior
in different types of data. For two numbers, it will generate a sum. The numbers may
integers or float. Thus the addition for integers is different from the addition to
floats.

An example is shown in Figure 6, where single function name, i.e. draw can be used
to draw different shapes. The name is the same in all the classes but the functionality
differs. This is known as function overriding, which is a type of polymorphism. We
will discuss it in detail in our next unit.

In our example, we also used a function “area” which was inherited by all the three
derived classes, i.e. triangle, circle and rectangle. But in the cases of the circle and
the triangle, we override the function area because the data types and number of
parameters varies.

Rectangle Class

Shape Class

 Data

Triangle Class

Draw ()

Area (l,b)

DataData
13Data

Object Oriented
Technology and Java

Figure 6: Polymorphism

 Check Your Progress 1

1) What do you understand by structured programming?

…………………………………………………………………………………

……..……………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

2) What is the basic idea of Object Oriented approach?

…………………………………………………………………………………

……..……………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

3) Differentiate between Data abstraction and data hiding.

…………………………………………………………………………………

……..……………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

……

4) Differentiate between Inheritance and polymorphism.

14

Object Oriented
Methodology - 1

…………………………………………………………………………………

……..……………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

1.5 COMPARISON OF OBJECT ORIENTED AND
PROCEDURE-ORIENTED APPROACHES

Procedure-oriented approach

A program in a procedural language is a list of instructions. Each statement in the
language tells the computer to do something. Get some input, do some computational
task and finally display the output. This computational task is a function or
procedure.

For small programs no other organizing principle is required. The programmer
creates the list of instructions, and the computer carries them out. The primary focus
is on functions. The program structure can be viewed as shown in Figure 7.

 Main Program

 Function 1 Function 2 Function 3

 Function 4

 Function 6

 Function 5

 Function 7

Figure 7: Procedure-Oriented Approach

All conventional programming languages like Pascal, C, FORTRAN, and COBOL
used to model programs based on the procedure re-oriented at approach. In the
procedure-oriented approach, the problem is divided into subprograms or modules.
Then functions are defined for each subprogram. Each function can have its own
data and logic. Information is passed between functions using parameters and global
variables. Functions can have local variables that cannot be accessed outside the
function.

The Programmer starts with thinking “What do we have to do to solve this problem?
and then s/he does it. Typically it starts with a pseudo code, a flow chart or a data
flow diagram and continuously refines the design into code. The concentration is
more on development of functions. Procedural languages have certain properties,
which give rise to some difficulties. The first and the foremost problem is the manner
in which functions access global variables. Many important data items are placed as
global so that they may be accessed by all the functions. Each function may have its

15

Object Oriented
Technology and Java

own local data. The relationship of data and functions in procedure-oriented approach
can be viewed as shown in Figure 8.

Global Data

Local data

Function 1

Global Data

Global Data

The following are the two major problems due to global variables:

• Uncontrolled modification: Due to these global variables, the risk of
unwanted access and modification increases greatly. Any time global variables
are available to any function, even to the functions which do not need it. That
function may inadvertently access and modify the values without in any way
violating the rules of the language. There is no way that this accidental misuse
can be avoided and also no method by which we can enforce that the data
definition and its use be confined to the functions which actually need them.

• Problem of enhancement and maintainability: In a large program it is
difficult to keep track of what data is used by which function. If a programmer
wants to add some new feature or to make some modification to the existing
feature, there are chances that the new code he would add could modify some
unprotected global data. If this modification is inappropriate, some part of the
program, which is working fine, may stop to do so. Revising this may in turn
may need some more modification. This may lead to an opportunity for errors
to creep in.

The next issue is the manner in which procedural languages specify the user-defined
data type. In these languages, the data type specifies the structure and the operations
that can be performed on the variables of that type. For example, in C language, a
built-in data type like int specifies the structure and the operations applicable to a
variable of type int. But in these languages, it is not applicable for user-defined. In C
language, a data type specifies only the structure of the variables of that type. The
operations that are to be performed on a variable of this type are left unspecified. As a
result, it may not be clear? What manner the variables are to be operated upon? It is
left to the user program to decide the type of operations that are to be performed upon
variables of that type.

For example we can specify the employee record using struct and using it. An array
of employees is defined and it is possible to access employee information by
accessing each element of the array. To have a richer specification, we can associate
operations like ‘compute salary’, ‘print leave details’ etc. In the procedure; oriented
approach, the programmer has to define these operations outside the structure.

The next issue is of reusability. Since procedural languages are strongly typed, their
functions are highly dependent on the type of variables that are being used. This

Figure 8: Functions and Global Variables

Local data

Function 2

Local data

Function 3 Function 4

Local data

16

Object Oriented
Methodology - 1

property hampers reusability. For example, if a program for sorting were written for
integers, it would not be able to sort real numbers. For that a new program has to be
written.

Finally the serious drawback of the procedural approach is that it does not model the
real world problems very well. The emphasis is more on functions that represents the
action or activity and does not really correspond to the elements of the problem.

The major characteristics of the procedure-oriented approach are:

• More emphasis is on doing things.
• It is based on the problem at hand. Sequence or procedure or functionality is

paramount.

• Most of the functions share global data which may lead to the following
problems:
 It will not produce software that is easy to maintain,

 The risk of unwanted access and modification increases.

• It will not result in reusable software.

• It employs top-down approach in program design.

• Works well in small systems.

Object Oriented approach

The major factor, which leads to the development of this new approach i.e, Object
Oriented approach is to resolve many problems encountered earlier in the procedural
approach.

In this approach, we decompose a problem into a number of entities called objects
and then build data and functions around these entities. The notion of “Object” comes
into the picture. ‘A collection of data and its operations is referred to as an object’.
Data is a vital element in the program development. Data is local to an object. This is
encapsulated within an object and is not accessible directly from outside the object.
These objects know how to interact with another object through the interface (a set of
operations). The organization of data and functions in Object Oriented programs is
shown in Figure 9 given below.

 Object A

Error!

Figure 9: Object Oriented Approach

 Data

Functions

The salient features of Object Oriented programming are:

 Data Data

Functions Functions

Object B Object C

17

Object Oriented
Technology and Java

• More emphasis is on data rather than procedure.

• Programs are modularized into entities called objects.

• Data structures methods characterize the objects of the problem.

• Since the data is not global, there is no question of any operations other than
those defined within the object, accessing the data. Therefore, there is no
scope of accidental modification of data.

• It is easier to maintain programs. The manner in which an object implements
its operations is internal to it. Therefore, any change within the object would
not affect external objects. Therefore, systems built using objects are resilient
to change.

• Object reusability, which can save many human hours of effort, is possible. An
application developer can use objects like ‘array’, ‘list’, ‘windows’, ‘menus’,
‘event’ and many other components, which were developed by other
programmers, in her program and thus reduce program development time.

• It employs bottom-up approach in program design.

1.6 BENEFITS OF OOPS

OOP offers several benefits to both the program developer and the user. The new
technology provides greater programmer productivity, better quality of software and
lesser maintenance cost. The major benefits are:

• Ease in division of job: Since it is possible to map objects of the problem
domain to those objects in the program, the work can be easily partitioned
based on objects.

• Reduce complexity: Software complexity can be easily managed.

• Provide extensibility: Object Oriented systems can be easily upgraded from
small to large system.

• Eliminate redundancy: Through inheritance we can eliminate redundant
code and extend the use of existing classes.

• Saves development time and increases productivity: Instead of writing code
from scratch, solutions can be built by using standard working modules.

• Allows building secure programs: Data hiding principle helps programmer
to build secure programs that cannot be accessed by code in other parts of the
program.

• Allows designing simpler interfaces: Message passing techniques between
objects allows making simpler interface descriptions with external systems.

 Check Your Progress 2
1) State True or False.

a) In the procedure-oriented approach, all data are shared by all functions.

b) One of the major characteristics of OOP is the division of programs into
objects that represent real-world entities.

c) Object Oriented programming language permit reusability of the existing
code.

d) Data is given a second-class status in procedural programming approach.

e) OOP languages permit functional as well as data abstraction

2) Does procedure oriented language support the concept of class?

18

Object Oriented
Methodology - 1

…………………………………………………………………………………

……..……………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

3) Give the reason of accessing data of a class through its functions only.

…………………………………………………………………………………

……..……………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………

1.7 INTRODUCTION TO COMMON OO
LANGUAGE

The language should support several of the OO Concepts to claim that they are object
oriented. Depending on the features they support, they can be classified into the
following two categories:

• Object-based programming languages,
• Object Oriented programming languages.

Object-based programming is the style of programming that primarily supports
encapsulation and object identity. Major features that are required for object-based
programming are:

• Data encapsulation

• Data hiding and access mechanisms

• Automatic initialization and clear-up objects

• Polymorphism.

Languages that support programming with objects are said to be object-based
programming languages. They do not support inheritance and dynamic binding. Ada
is a typical object-based programming language.

We have already introduced to you the concept of data encapsulation, data hiding,
polymorphism and inheritance in previous sections of this unit. The access
mechanism is implemented through various access specifiers such as public,
protected, and private. The function of these specifiers is to decide the scope of a
particular member within software. This provides the convenient way for the
programmer to decide about the accessibility of a member for others.

The other issue is automatic initialization and clear-up objects. Automatic
initialization means to give initial values to various variables that denote the state of
the object at the time of object creation. This is implemented using constructors.
Finally when there is no use of the object, we can destroy it. At that time all the
resources used by it must be cleared-up. This is implemented using destructors. We
will discuss about this in due course.

19

Object Oriented
Technology and Java

Let us discuss the concept of dynamic binding. Binding refers to the linking of
objects to their properties or method call to the code to be executed in response to a
call. It can be done at compile time or run time. Dynamic binding refers to the
linking done at the run (executor) time. We will study this in detail in our coming
units of the next blocks.

Object Oriented programming incorporates all of object-based programming features
along with additional features such as inheritance and dynamic binding. Examples of
Object Oriented languages are C++, Smalltalk, object-Pascal, and Java.

Use of a particular language depends on characteristics and requirements of an
application, organizational impact of the choice and reuse of the existing programs.
Java is becoming the most widely used general purpose OOP language in the
computer industry today.

1.8 APPLICATIONS OF OOPs

Applications of OOPs are gaining importance. There is a lot of excitement and
interest among software developers in using OOPs. The richness of the OOP
environment will enable the software industry to improve not only the quality of the
software systems but also its productivity. Object Oriented technology is certainly
changing the way software engineers think, analyze, design and implement systems.

The most popular application using Object Oriented programming is the interface
designing for window base systems. Real systems are more complex and contain
many objects with a large number of attributes and methods of complex nature. OOP
is useful in such cases because it can simplify a complex problem. The application
area of OOP includes:

• Object Oriented databases
• Embedded systems
• Simulation and modeling
• Neural networks
• Decision support systems
• Office automation systems
• AI and expert systems
• CAD/CAM systems
• Internet solutions.

 Check Your Progress 3
1) State True or False

a) Protecting data from access by unauthorized functions is called data
hiding.

b) Wrapping up of data of different types and functions into a unit is known
as encapsulation.

c) Polymorphism can be used in implementing inheritance.

d) A Class permits us to build user-defined data types.

e) Object Oriented approach cannot be used to create databases.

2) Explain the advantage of dynamic binding.

…………………………………………………………………………………

…

…………………………………………………………………………………

…………………………………………………………………………………

20

Object Oriented
Methodology - 1

…………………………………………………………………………………

…………………………………………………………………………………

…………

3) Differentiate between object based and object oriented programming
languages

……………………………………………………………………………

…………..………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

.

1.9 SUMMARY

OOP is a new way of organizing and developing programs. It eliminates many
pitfalls of the conventional programming approach. OOP programs are organized
around objects, which contain data and functions that operate on that data. A class is
a template for a number of objects. The object is an instance of a class. The major
features of OOP are data abstraction, data encapsulation, inheritance and
polymorphism. This new methodology increases programmer productivity, delivers
better quality of software and lessens maintenance cost. Languages that support
several OOP concepts include C++, Smalltalk, Object Pascal and Java.

1.10 SOLUTIONS/ANSWERS

Check Your Progress 1

1) In structured programming, a program is divided into functions or modules and
each module has a clearly defined purpose and a defined interface to the other
functions in the program. Dividing a program into functions and modules is one
of the major characteristics of structured programming.

Here we are least bothered about the data of the problem provided. Our main
objective is to achieve control of the execution of program correctly.

2) In Object Oriented programming (OOP), the program is organized around the
data being operated upon rather than the operations performed. The basic idea
behind OOP is to combine both, data and its functions that operate on the data
into a single unit called object.

3) In data abstraction, data structures are used without having to be concerned
about the exact details of implementation.

This insulation of the data from direct access by the other elements of the
program is known as data hiding. It is achieved through classes in OOPs.

4) Inheritance is the process by which objects of one class acquire the properties
of objects of another class in the hierarchy. By using inheritance, new classes
can be built from the existing old classes. It means that we can add additional
features to an existing class without modifying it. This inheritance mechanism
allows the programmer to reuse a class that is almost, but not exactly, similar to
the required one by adding a few more features to it.

Polymorphism means the ability to take more than one form with the same name.
Using polymorphism we can have more than one function with the same name but
with different functionalities.

21

Object Oriented
Technology and Java

Check Your Progress 2
1) False. b) True. c) True. d) True. e) True.

2) Yes procedural languages also support the concept of class, for example, type
(data type of the language) is a class and is supported by procedural languages.
You know C language support several data types. But procedural languages
don’t support the user-defined class that has data and functions together.

3) Accessing data of a class through its functions is in basic philosophy of object
orientation. If data is not having restrictive access and open to all the principle
of data hiding is violated and emphasis on data get reduced.

Check Your Progress 3

1) True. b) True. c) True. d) True. e) False.

2) It gives option of run-time selection of methods on the basis of current input
during execution of program. Dynamic binding allows new objects and code
to be interfaced with or added to a system without affecting existing code.

3) Object based languages support the notion of objects. Object Oriented
languages support the concept of class and permit inheritance between classes.

22

	UNIT 1 OBJECT ORIENTED METHODOLOGY-1
	Structure Page Nos.
	Structured Programming
	Objects
	
	
	
	

	Data abstraction and encapsulation
	
	
	
	
	
	
	Figure 5: Inheritance

	
	Polymorphism
	
	
	
	
	
	
	
	
	
	
	
	
	Figure 6: Polymorphism
	(Check Your Progress 1

	Procedure-oriented approach
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	(Check Your Progress 2
	(Check Your Progress 3

