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1.0 INTRODUCTION 

According to the theory of evolution, human beings have evolved from the lower 
species over many millennia. The chief asset that made humans “superior” to their 
ancestors was the ability to reason. How well this ability has been used for scientific 
and technological development is common knowledge. But no systematic study of 
logical reasoning seems to have been done for a long time. The first such study that 
has been found is by Greek philosopher Aristotle (384-322 BC). In a modified form, 
this type of logic seems to have been taught through the Middle Ages. 
 
Then came a major development in the study of logic, its formalisation in terms of 
mathematics.It was mainly Leibniz (1646-1716) and George Boole (1815-1864) who 
seriously studied and development this theory, called symbolic logic. It is the basics 
of this theory that we aim to introduce you to in this unit and the next one. 
 
In the introduction to the block you have read about what symbolic logic is. Using it 
we can formalise our arguments and logical reasoning in a manner that can easily 
show if the reasoning is valid, or is a fallacy. How we symbolise the reasoning is what 
is presented in this unit. 
 
More precisely, in Section 1.2 (i.e., Sec. 1.2, in brief) we talk about what kind of 
sentences are acceptable in mathematical logic.  We call such sentences statements or 
propositions. You will also see that a statement can either be true or false. 
Accordingly, as you will see, we will give the statement a truth value T or F. 
 
In Sec. 1.3 we begin our study of the logical relationship between propositions.  This 
is called prepositional calculus. In this we look at some ways of connecting simple 
propositions to obtain more complex ones.  To do so, we use logical connectives like 
“and” and “or”.  We also introduce you to other connectives like “not”, “implies” and 
“implies and is implied by”.  At the same time we construct tables that allow us to 
find the truth values of the compound statement that we get. 
 
In Sec. 1.4 we consider the conditions under which two statements are “the same”.  In 
such a situation we can safely replace one by the other. 
 
And finally, in Sec 1.5, we talk about some common terminology and notation which 
is useful for quantifying the objects we are dealing with in a statement. 
 
It is important for you to study this unit carefully, because the other units in this block 
are based on it.  Please be sure to do the exercises as you come to them.  Only then 
will you be able to achieve the following objectives. 
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Elementary Logic 1.1 OBJECTIVES 

After reading this unit, you should be able to:  

• distinguish between propositions and non-propositions; 
• construct the truth table of any compound proposition; 
• identify and use logically equivalent statements; 
• identify and use logical quantifiers. 
 
Let us now begin our discussion on mathematical logic. 
 

1.2 PROPOSITIONS 

Consider the sentence ‘In 2003, the President of India was a woman’. When you read 
this declarative sentence, you can immediately decide whether it is true or false. And 
so can anyone else. Also, it wouldn’t happen that some people say that the statement 
is true and some others say that it is false. Everybody would have the same answer.  
So this sentence is either universally true or universally false. 
 
Similarly, ‘An elephant weighs more than a human being.’ Is a declarative sentence 
which is either true or false, but not both.  In mathematical logic we call such 
sentences statements or propositions. 
 
On the other hand, consider the declarative sentence ‘Women are more intelligent than 
men’. Some people may think it is true while others may disagree. So, it is neither 
universally true nor universally false. Such a sentence is not acceptable as a statement 
or proposition in mathematical logic. 
 
Note that a proposition should be either uniformly true or uniformly false. For 
example, ‘An egg has protein in it.’, and ‘The Prime Minister of India has to be a 
man.’ are both propositions, the first one true and the second one false. 
 
Would you say that the following are propositions? 

‘Watch the film. 
‘How wonderful!’ 
‘What did you say?’ 
 
Actually, none of them are declarative sentences.  (The first one is an order, the 
second an exclamation and the third is a question.) And therefore, none of them are 
propositions. 
 
Now for some mathematical propositions!  You must have studied and created many 
of them while doing mathematics. Some examples are 
 
Two plus two equals four. 
Two plus two equals five. 
x + y > 0 for x > 0 and y > 0. 
A set with n elements has 2n subsets. 
 
Of these statements, three are true and one false (which one?). 
Now consider the algebraic sentence ‘x + y > 0’.  Is this a proposition?  Are we in a 
position to determine whether it is true or false?  Not unless we know the values that x 
and y can take.  For example, it is false for  
x = 1, y = -2 and true if x = 1, y = 0.  Therefore, 
‘x + y > 0’ is not a proposition, while 
‘x + y > 0 for x > 0, y > 0’ is a proposition. 
 



 

 9 

Propositional Calculus Why don’t you try this short exercise now? 

E1) Which of the following sentences are statements? What are the reasons for your 
answer? 
i) The sun rises in the West. 
ii) How far is Delhi from here? 
iii) Smoking is injurious to health. 
iv) There is no rain without clouds. 
v) What is a beautiful day! 
vi) She is an engineering graduates. 
vii) 2n + n is an even number for infinitely many n. 
viii) x + y = y + x for all x, y ∈ R. 
ix) Mathematics is fun. 
x) 2n = n2. 

 
Usually, when dealing with propositions, we shall denote them by lower case 
letters like p, q, etc. So, for example, we may denote 
 
‘Ice is always cold.’ by p, or 
‘cos2 θ + sin2 θ =1 for θ ∈ [ 0, 2π]’ by q. 
We shall sometimes show this by saying  
p: Ice is always cold., or 
q: cos2 θ + sin2 θ = 1 for θ ∈ [ 0, 2π]. 

 
Now, given a proposition, we know that it is either true or false, but not both.  If 
it is true, we will allot it the truth value T.  If it is false, its truth value will be 
F.  So, for example, the truth value of 

Sometimes, as in the 
context of logic circuits 
(See unit 3), we will use 1 
instead of T and 0 instead 
of F. 

 
‘Ice melts at 30o C.’ is F, while that of ‘x2 ≥ 0 for x ∈ R’ is T. 
 
Here are some exercises for you now. 

 

E2) Give the truth values of the propositions in E1. 
 

E3) Give two propositions each, the truth values of which are T and F, respectively.  
  Also give two examples of sentences that are not propositions. 

Let us now look at ways of connecting simple propositions to obtain compound 
statements. 
 

1.3 LOGICAL CONNECTIVES 

When you’re talking to someone, do you use very simple sentences only?  Don’t you 
use more complicated ones which are joined by words like ‘and’, ‘or’, etc?  In  the 
same way, most statements in mathematical logic are combinations of simpler 
statements joined by words and phrases like ‘and’. ‘or’, ‘if … then’. ‘if and only if’, 
etc.  These words and phrases are called logical connectives.  There are 6 such 
connectives, which we shall discuss one by one. 
 
1.3.1 Disjunction 

Consider the sentence ‘Alice or the mouse went to the market.’. This can be written as 
‘Alice went to the market or the mouse went to the market.’  So, this statement is 
actually made up of two simple statements connected by ‘or’. We have a term for such 
a compound statement. 
 
Definition: The disjunction of two propositions p and q is the compound statement 
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Elementary Logic p or q, denoted by p ∨ q. 
For example, ‘Zarina has written a book or Singh has written a book.’ Is the 
disjunction of p and q, where 
p : Zarina has written a book, and  
q : Singh has written a book. 
 
Similarly, if p denotes ‘ 2 > 0’ and q denotes ‘2 < 5’, then p ∨ q denotes the statement 
‘2 is greater than 0 or 2 is less than 5.’. 
 
Let us now look at how the truth value of p ∨ q depends upon the truth values of p and 
q.  For doing so, let us look at the example of Zarina and Singh, given above.  If even 
one of them has written a book, then the compound statement p ∨ q is true.  Also, if 
both have written books, the compound statement p ∨ q is again true.  Thus, if the 
truth value of even one out of p and q is T, then that of ‘p ∨ q’ is T.  Otherwise, the 
truth value of p ∨ q is F.  This holds for any pair of propositions p and q.  To see the 
relation between the truth values of p, q and p ∨ q easily, we put this in the form of a 
table (Table 1), which we call a truth table. 

 
Table 1: Truth table for disjunction 

 
p q p ∨ q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
T 
T 
F 

 
 
 
 
 
 
How do we form this table?  We consider the truth values that p can take – T or F.  
Now, when p is true, q can be true or false.  Similarly, when p is false q can be true or 
false. In this way there are 4 possibilities for the compound proposition p ∨ q. Given 
any of these possibilities, we can find the truth value of p ∨ q. For instance, consider 
the third possibility, i.e., p is false and q is true. Then, by definition, p ∨ q is true. In 
the same way, you can check that the other rows are consistent. 
 
Let us consider an example. 
 
Example 1: Obtain the truth value of the disjunction of ‘The earth is flat’.  
and ‘3 + 5 = 2’. 
 
Solution: Let p denote ‘The earth is flat,’ and q denote ‘3 + 5 = 2’. Then we know 
that the truth values of both p and q are F.  Therefore, the truth value of p ∨ q is F. 
 

*** 
Try an exercise now. 
 

E4) Write down the disjunction of the following propositions, and give its truth 
value. 
i) 2 + 3 = 7, 

 ii) Radha is an engineer. 

 
We also use the term ‘inclusive or ‘ for the connective we have just discussed.  This is 
because p ∨ q is true even when both p and q are true.  But, what happens when we 
want to ensure that only one of them should be true?  Then we have the following 
connective. 
 
Definition: The exclusive disjunction of two propositions p and q is the statement 
‘Either p is true or q is true, but both are not true.’.  Either p is true or q is true, 
but both are not true.’. We denote this by p ⊕ q . 



 

 11 

Propositional Calculus So, for example, if p is ‘2 + 3 = 5’ and q the statement given in E4(ii), then p ⊕ q is 
the statement ‘Either 2 + 3 = 5 or Radha is an engineer’. This will be true only if 
Radha is not an engineer. 
 
In general, how is the truth value of p ⊕ q related to the truth values of p and q?  This 
is what the following exercise is about. 
 

E5) Write down the truth table for ⊕.  Remember that p ⊕ q is not true if both p and 
q are true. 

Now let us look at the logical analogue of the coordinating conjunction ‘and’. 
 
1.3.2 Conjunction 

As in ordinary language, we use ‘and’ to combine simple propositions to make 
compound ones.  For instance, ‘ 1 + 4 ≠ 5 and Prof.  Rao teaches Chemistry.’ is 
formed by joining ‘1 + 4 ≠ 5’ and ‘Prof. Rao teaches Chemistry’ by ‘and’. Let us 
define the formal terminology for such a compound statement. 
 
Definition: We call the compound statement ‘p and q’ the conjunction of the 
statements p and q. We denote this by p ∧ q. 
 
For instance, ‘3 + 1 ≠ 7 ∧ 2 > 0’ is the conjunction of  ‘3 + 1 ≠ 7’ and ‘2 > 0’. 
Similarly, ‘2 + 1 = 3 ∧ 3 = 5’ is the conjunction of ‘2 + 1 = 3’ and ‘3 = 5’. 
 
Now, when would p ∧ q be true?  Do you agree that this could happen only when both 
p and   q are true, and not otherwise?  For instance, ‘2 + 1 = 3 ∧ 3 = 5’ is not true 
because ‘3 = 5’ is false. 
So, the truth table for conjunction would be as in Table 2. 
 

Table 2: Truth table for conjunction 
 

P q p ∧ q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
F 
F 

 
To see how we can use the truth table above, consider an example. 
 
Example 2: Obtain the truth value of the conjunction of ‘2 ÷5 = 1’ and ‘Padma is in 
 Bangalore.’. 
 
Solution: Let p : 2 ÷5 = 1, and 
 q: Padma is in Bangalore. 
 
Then the truth value of p is F.  Therefore, from Table 3 you will find that the truth 
value of p ∧ q is F. 
 

*** 
Why don’t you try an exercise now? 
 

E6)    Give the set of those real numbers x for which the truth value of p ∧ q is T, 
 where p : x > -2, and  q : x + 3 ≠ 7 

If you look at Tables 1 and 2, do you see a relationship between the truth values in  
their last columns?  You would be able to formalize this relationship after studying the 
next connective. 
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Elementary Logic 1.3.3 Negation 

You must have come across young children who, when asked to do something, go 
ahead and do exactly the opposite.  Or, when asked if they would like to eat, say rice 
and curry, will say ‘No’, the ‘negation’ of yes!  Now, if p denotes the statement ‘I will 
eat rice.’, how can we denote ‘I will not eat rice.’?  Let us define the connective that 
will help us do so. 
 
Definition: The negation of a proposition p is ‘not p’, denoted by ~p. 
 
For example, if p is ‘Dolly is at the study center.’, then ~ p is ‘Dolly is not at the study 
center’.  Similarly, if p is ‘No person can live without oxygen.’, ~ p is ‘At least one 
person can live without oxygen.’. 
 
Now, regarding the truth value of ~ p, you would agree that it would be T if that of p 
is F, and vice versa.  Keeping this in mind you can try the following exercises. 
 

E7) Write down ~ p, where p is 
 i) 0 – 5 ≠ 5 
 ii) n > 2 for every n ∈ N. 
 iii) Most Indian children study till class 5. 
 
E8) Write down the truth table of negation. 

Let us now discuss the conditional connectives, representing ‘If …, then …’ and ‘if 
and only if’. 
 
1.3.4 Conditional Connectives 

Consider the proposition ‘If Ayesha gets 75% or more in the examination, then she 
will get an A grade for the course.’.  We can write this statement as ‘If p, and q’, 
where 

p:  Ayesha gets 75% or more in the examination, and 
q:  Ayesha will get an A grade for the course. 

 
This compound statement is an example of the implication of q by p. 
 
Definition: Given any two propositions p and q, we denote the statement ‘If p, then 
q’ by p → q.  We also read this as ‘p implies q’. or ‘p is sufficient for q’, or ‘p only if 
q’.  We also call p the hypothesis and q the conclusion.  Further, a statement of the 
form p → q is called a conditional statement or a conditional proposition. 
 
So, for example, in the conditional proposition ‘If m is in Z, then m belongs to Q.’ the 
hypothesis is ‘m ∈ Z’ and the conclusion is ‘m ∈ Q’. 
 
Mathematically, we can write this statement as 

m ∈ Z → m ∈ Q. 
 
Let us analyse the statement p → q for its truth value.  Do you agree with the truth 
table we’ve given below (Table 3)?  You may like to check it out while keeping an 
example from your surroundings in mind. 
 

Table 3: Truth table for implication 
 p q p → q 

T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 
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Propositional Calculus You may wonder about the third row in Table 3. But, consider the example ‘3 < 0 → 
5 > 0’. Here the conclusion is true regardless of what the hypothesis is.  And 
therefore, the conditional statement remains true.  In such a situation we say that the 
conclusion is vacuously true. 
 
Why don’t you try this exercise now? 
 

E9) Write down the proposition corresponding to p → q, and determine the values 
of x for which it is false, where 

 p : x + y = xy where x, y ∈ R 
q : x ⊀ 0 for every x ∈ Z. 

 
Now, consider the implication ‘If Jahanara goes to Baroda, then the she doesn’t  
participate in the conference at Delhi.’. What would its converse be?  To find it, the  
following definition may be useful. 
 
Definition: The converse of p → q is q → p.  In this case we also say ‘p is 
necessary for q’, or ‘p if q’. 
 
So, in the example above, the converse of the statement would be ‘If Jahanara doesn’t 
participate in the conference at Delhi, then she goes to Baroda.’. This means that  
Jahanara’s non-participation in the conference at Delhi is necessary for her going to  
Baroda. 
 
Now, what happens when we combine an implication and its converse?   
 
To show ‘p → q and q → p’, we introduce a shorter notation. 
 
Definition: Let p and q be two propositions. The compound statement  
(p → q) ∧(q → p) is the biconditional of p and q. We denote it by p ↔ q, and read it 
as ‘p if and only q’. 
 
We usually shorten ‘if and only ‘if’ to iff. 
 
We also say that ‘p implies and is implied by q’. or ‘p is necessary and sufficient  
for  q’. 
 
For example, ‘Sudha will gain weight if and only if she eats regularly.’ Means that  
‘Sudha will gain weight if she eats regularly and Sudha will eat regularly if she gains  
weight.’ 
 
One point that may come to your mind here is whether there’s any difference in the 
two statements p ↔ q and q ↔ p.  When you study Sec. 1.4 you will realize why they 
are inter-changeable. 
 
Let us now consider the truth table of the biconditional, i.e., of the two-way implication.   
 
To obtain its truth values, we need to use Tables 2 and 3, as you will see in Table 4.   
This is because, to find the value of ( p → q ) ∧ ( q → p) we need to know the values 
of each of the simpler statements involved. 

 
Table 4: Truth table for two-way implication. 

 
 
                                             

p q p → q q → p p ↔ q 
T 
T 
F 
F 

T 
F 
T 
F 

T 
F 
T 
T 

T 
T 
F 
T 

T 
F 
F 
T 

The two connectives → and 
↔ are called conditional 
connectives. 
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Elementary Logic As you can see from the last column of the table (and from your own experience),  
p ↔ q is true only when both p and q are true or both p and q are false. In other 
words, p ↔ q is true only when p and q have the same truth values. Thus, for 
example,‘Parimala is in America iff 2 + 3 = 5’ is true only if ‘Parimala is in America,’ 
is true. 
 
Here are some related exercises. 
 

E10) For each of the following compound statements, first identify the simple 
propositions p, q, r, etc., that are combined to make it.  Then write it in symbols, 
using the connectives, and give its truth value. 

 i) If triangle ABC is equilateral, then it is isosceles. 
 ii) a and b are integers if and only if ab is a rational number. 

   iii) If  Raza has five glasses of water and Sudha has four cups of tea, then 
Shyam will not pass the math examination. 

 iv) Mariam is in Class 1 or in Class 2. 
 
E11) Write down two propositions p and q for which q → p is true but p ↔ q is 

false. 

Now, how would you determine the truth value of a proposition which has more than 
one connective in it? For instance, does ~ p ∨ q mean ( ~ p) ∨ q or ~ ( p ∨ q)? We 
discuss some rules for this below. 
 
1.3.5 Precedence Rule 

While dealing with operations on numbers, you would have realized the need for 
applying the BODMAS rule.  According to this rule, when calculating the value of an 
arithmetic expression, we first calculate the value of the Bracketed portion, then apply 
Of, Division, Multiplication, Addition and Subtraction, in this order.  While 
calculating the truth value of compound propositions involving more than one 
connective, we have a similar convention which tells us which connective to apply 
first. 
 
Why do we need such a convention?  Suppose we didn’t have an order of preference, 
and want to find the truth of, say ~ p ∨ q.  Some of us may consider the value of ( ~ 
p) ∨ q, and some may consider ~ ( p ∨ q).  The truth values can be different in 
these cases.  For instance, if p and q are both true, then ( ~ p) ∨ q is true, but ~ ( 
p ∨ q) is false.  So, for the purpose of unambiguity, we agree to such an order or 
rule.  Let us see what it is. 
 
The rule of precedence:  The order of preference in which the connectives are 
applied in a formula of propositions that has no brackets is  

i) ~ 
ii) ∧ 
iii) ∨ and ⊕ 
iv) → and ↔ 
 
Note that the ‘inclusive or’ and ‘exclusive or’ are both third in the order of preference.  
However, if both these appear in a statement, we first apply the left most one.  So, for 
instance, in p ∨ q ⊕ ~ p, we first apply ∨ and then ⊕.  The same applies to the 
‘implication’ and the ‘biconditional’, which are both fourth in the order of preference. 
 
To clearly understand how this rule works, let us consider an example. 
 
Example 3: Write down the truth table of p → q ∧ ~ r ↔ r ⊕ q 
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Propositional Calculus Solution: We want to find the required truth value when we are given the truth values 
of p, q and r.  According to the rule of precedence given above, we need to first find 
the truth value of ~ r, then that of  ( q ∧ ~ r), then that of (r ⊕ q), and then that of p → 
( q ∧ ~ r), and finally the truth value of [ p → ( q ∧ ~ r)] ↔ r ⊕ q. 
 
So, for instance, suppose p and q are true, and r is false.  Then ~ r will have value T, q 
∧ ~ r will be T, r ⊕ q will be T, p → ( q ∧ ~ r) will be T, and hence, p → q ∧ ~ r ↔ r 
⊕ q will be T. 
 
You can check that the rest of the values are as given in Table 5.  Note that we have 8  
possibilities (=23) because there are 3 simple propositions involved here. 
 

Table 5: Truth table for p → q ∧ ~ r ↔ r ⊕ q 

p q r ~ r q ∧ ~ r r ⊕ q p → q ∧ ~ r p → q ∧ ~ r ↔ r ⊕ q 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

F 
T 
F 
T 
F 
T 
F 
T 

F 
T 
F 
F 
F 
T 
F 
F 

F 
T 
T 
F 
F 
T 
T 
F 

F 
T 
F 
F 
T 
T 
T 
T 

T 
T 
F 
T 
F 
T 
T 
F 
 

 
*** 

 
You may now like to try some exercises on the same lines. 
 

E12) In Example 3, how will the truth values of the compound statement change if 
you first apply ↔ and then → ? 

 
E13) In Example 3, if we replace ⊕ by ∧, what is the new truth table? 
 
E14) From the truth table of p ∧ q ∨ ~ r and (p ∧ q ) ∨ ( ~ r) and see where they 

differ. 
 
E15) How would you bracket the following formulae to correctly interpret them? 

[For instance, p ∨ ~ q ∧ r would be bracketed as p ∨ ((~ q) ∧ r).] 
i) p ∨ q, 

 ii) ~ q → ~ p, 
 iii) p → q ↔ ~ p ∨ q, 

iv) p ⊕ q ∧ r → ~ p ∨ q ↔ p ∧ r. 

So far we have considered different ways of making new statements from old ones.  
But, are all these new ones distinct?  Or are some of them the same?  And “same” in 
what way?  This is what we shall now consider. 
 

1.4 LOGICAL EQUIVALENCE 

‘Then you should say what you mean’, the March Have went on. ‘I do,’ Alice hastily 
replied, ‘at least … at least I mean what I say – that’s the same thing you know.’ 
‘Not the same thing a bit!’ said the Hatter. ‘Why you might just as well say that “I see 
what I eat” is the same thing as “I eat what I see”!’ 

-from ‘Alice in Wonderland’ 
        by Lewis Carroll 
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Elementary Logic In Mathematics, as in ordinary language, there can be several ways of saying the same 
thing.  In this section we shall discuss what this means in the context of logical 
statements. 
 
Consider the statements ‘If Lala is rich, then he must own a car.’. and ‘if Lala doesn’t 
own a car, then he is not rich.’. Do these statements mean the same thing? If we write 
the first one as p → q, then the second one will be (~q) → (~ p). How do the truth 
values of both these statements compare? 
 
We find out in the following table. 
 

Table 6 
 

p q ~ p ~ q p → q ~ q → ~p 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

F 
T 
F 
T 

T 
F 
T 
T 

T 
F 
T 
T 

 
                         
 
 
 
 
Consider the last two columns of Table 6. You will find that ‘p → q’ and ‘q → ~ p’ 
have the same truth value for every choice of truth values of p and q. When this 
happens, we call them equivalent statements. 
 
Definition: We call two propositions r and s logically equivalent provided they have 
the same truth value for every choice of truth values of simple propositions involved 
in them.  We denote this fact by r ≡ s. 
 
So, from Table 6 we find that ( p → q) ≡ (~ q → ~ p). 
 
You can also check that ( p ↔ q) ≡ ( q ↔ p) for any pair of propositions p and q. 
 
As another example, consider the following equivalence that is often used in 
mathematics.  You could also apply it to obtain statements equivalent to ‘Neither a 
borrower, nor a lender be.’! 
 
Example 4: For any two propositions p and q, show that ~ (p ∨ q ) ≡ ~ p ∧ ~ q. 
 
Solution:  Consider the following truth table. 
 

Table 7 
 

p q ~ p ~ q p ∨ q ~ ( p ∨ q) ~ p ∧ ~ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

F 
T 
F 
T 

T 
T 
T 
F 

F 
F 
F 
T 

F 
F 
F 
T 

 
You can see that the last two columns of Table 7 are identical.  Thus, the truth values 
of ~ ( p ∨ q) and ~ p ∧ ~ q agree for every choice of truth values of p and q. 
Therefore, ~ (p ∨ q) ≡ ~ p ∧ ~ q. 

*** 
 
The equivalence you have just seen is one of De Morgan’s laws.  You might have 
already come across these laws in your previous studies of basic Mathematics. 
 
The other law due to De Morgan is similar : ~ (p ∧ q) ≡ ~ p ∨ ~ q. 

Fig. 1: Augustus De Morgan 
(1806-1871) was born 
in Madurai 

 
In fact, there are several such laws about equivalent propositions.  Some of them are 
the following, where, as usual, p, q and r denote propositions. 
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Propositional Calculus a) Double negation law :  ~ ( ~ p) ≡ p 
b) Idempotent laws: p ∧ p ≡ p, 

p ∨ p ≡ p 
 c) Commutativity: p ∨ q ≡ q ∨ p 
     p ∧ q ≡ q ∧ p 

d) Associativity:  (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) 
     (p ∧ q) ∧ r ≡ p ∧ ( q ∧ r) 

e) Distributivity:  ∨ ( q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 
     p ∧ ( q ∨ r) ≡   (p ∧ q) ∨ ( p ∧ r) 

We ask you to prove these laws now. 
 

E16) Show that the laws given in (a)-(e) above hold true. 
E17) Prove that the relation of ‘logical equivalence’ is an equivalence relation. 
E18)  Check whether ( ~ p ∨ q) and ( p → q) are logically equivalent. 

 
The laws given above and the equivalence you have checked in E18 are commonly 
used, and therefore, useful to remember.  You will also be applying them in Unit 3 of 
this Block in the context of switching circuits. 
 
Let us now consider some prepositional formulae which are always true or always 
false. Take, for instance, the statement ‘If Bano is sleeping and Pappu likes ice-cream, 
then Beno is sleeping’. You can draw up the truth table of this compound proposition 
and see that it is always true. This leads us to the following definition. 
 
Definition: A compound proposition that is true for all possible truth values of the 
simple propositions involved in it is called a tautology.  Similarly, a proposition that 
is false for all possible truth values of the simple propositions that constitute it is 
called a contradiction. 
 
Let us look at some example of such propositions. 
 
Example 5: Verify that p ∧ q ∧ ~ p is a contradiction and p → q ↔ ~ p ∨ q is a 
tautology. 
 
Solution: Let us simultaneously draw up the truth tables of these two propositions 
below. 

Table 8 

p q ~ p p ∧ q p ∧ q ∧ ~ p p → q ~ p ∨ q p → q ↔ ~ p ∨ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

T 
F 
F 
F 

F 
F 
F 
F 

T 
F 
T 
T 

T 
F 
T 
T 

T 
T 
T 
T 

 
Looking at the fifth column of the table, you can see that p ∧ q ∧ ~p is a contradiction.  
This should not be surprising since p ∧ q ∧ ~ p ≡ ( p ∧ ~ p) ∧ q (check this by using 
the various laws given above). 
 
And what does the last column of the table show?  Precisely that p → q ↔ ~ p ∨ q is 
a tautology. 

*** 
 
Why don’t you try an exercise now? 
 

E19) Let T  denote a tautology ( i.e., a statement whose truth value is always T) and F 
a contradiction.  Then, for any statement p, show that 
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Elementary Logic i) p ∨ T  ≡ T 
ii) p ∧ T  ≡ p 
iii) p ∨ F ≡ p 
iv) p ∧ F ≡ F 

Another way of proving that a proposition is a tautology is to use the properties of 
logical equivalence.  Let us look at the following example. 
 
Example 6: Show that [(p → q) ∧ ~ q] → ~ p is a tautology. 
 
Solution: [( p → q) ∧ ~ q] → ~ p 

Complementation law:  
q ∧ ~ q is a contradiction. 

≡ [(~ p ∨ q) ∧ ~ q]→ ~ p, using E18, and symmetricity of  ≡. 
≡ [(~ p ∧ ~ q) ∨ (q  ∧ ~ q)] → ~ p, by De Morgan’s laws. 
≡ [(~ p ∧ ~ q) ∨ F] → ~ p, since q ∧ ~ q is always false. 
≡ (~ p ∧ ~ q) → ~ p, using E18. 

 
Which is tautology. 
 
And therefore the proposition we started with is a tautology. 
 

*** 
 
The laws of logical equivalence can also be used to prove some other logical 
equivalences, without using truth tables. Let us consider an example. 
 
Example 7: Show that (p → ~ q) ∧ ( p → ~ r) ≡ ~ [ p ∧ ( q ∨ r)]. 
 
Solution: We shall start with the statement on the left hand side of the equivalence 
that we have to prove. Then, we shall apply the laws we have listed above, or the 
equivalence in E 18, to obtain logically equivalent statements. We shall continue this 
process till we obtain the statement on the right hand side of the equivalence given 
above.  Now 

(p → ~ q) ∧ (p → ~ r) 
 ≡ (~ p ∨ q) ∧ (~ p ∨ ~ r), by E18 
 ≡ ~ p ∨ ( ~ q ∧ ~ r), by distributivity 
 ≡ ~ p ∨ [ ~ (q ∨ r)], by De Morgan’s laws 
 ≡ ~ [p ∧ (q ∨ r)], by De Morgan’s laws 
 
So we have proved the equivalence that we wanted to. 
 

*** 
 
You may now like to try the following exercises on the same lines. 
 

E20) Use the laws given in this section to show that 
 ~ (~ p ∧ q) ∧ ( p ∨ q) ≡ p. 
 
E21) Write down the statement ‘If it is raining and if rain implies that no one can go 
 to see a film, then no one can go to see a film.’ As a compound proposition. 
 Show that this proposition is a tautology, by using the properties of logical 
 equivalence. 
 
E22) Give an example, with justification, of a compound proposition that is neither a 
 tautology nor a contradiction. 
 
Let us now consider proposition-valued functions. 



 
Propositional Calculus 

1.5 LOGICAL QUANTIFIERS 

In Sec. 1.2, you read that a sentence like ‘She has gone to Patna.’ Is not a proposition, 
unless who ‘she’ is clearly specified. 
Similarly, ‘x > 5’ is not a proposition unless we know the values of x that we are 
considering. Such sentences are examples of ‘propositional functions’. 
 
Definition: A propositional function, or a predicate, in a variable x is a sentence 
p(x) involving x that becomes a proposition when we give x a definite value from the 
set of values it can take.  We usually denote such functions by p(x), q(x), etc.  The set 
of values x can take is called the universe of discourse. 
 
So, if p(x) is ‘x > 5’, then p(x) is not a proposition.  But when we give x particular 
values, say x = 6 or x = 0, then we get propositions.  Here, p(6) is a true proposition 
and p(0) is a false proposition. 
 
Similarly, if q(x) is ‘x has gone to Patna.’, then replacing x by ‘Taj Mahal’ gives us a 
false proposition. 
 
Note that a predicate is usually not a  proposition.  But, of course, every proposition is 
a prepositional function in the same way that every real number is a real-valued 
function, namely, the constant function. 
 
Now, can all sentences be written in symbolic from by using only the logical 
connectives?  What about sentences like ‘x is prime and x + 1 is prime for some x.’?  
How would you symbolize the phrase ‘for some x’, which we can rephrase as ‘there 
exists an x’?  You must have come across this term often while studying mathematics.  
We use the symbol ‘∃’ to denote this quantifier, ‘there exists’.  The way we use it ∃ is called the 

existential quantifier.
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is, for instance, to rewrite ‘There is at least one child in the class.’ as‘(∃ x in U)p(x)’, 
where p(x) is the sentence ‘x is in the class.’ and  U is the set of all children. 
 
Now suppose we take the negative of the proposition we have just stated.  Wouldn’t it 
be ‘There is no child in the class.’?  We could symbolize this as ‘for all x in U, q(x)’ 
where x ranges over all children and q(x) denotes the sentence ‘x is not in the class.’, 
i.e., q(x) ≡ ~ p(x). 
 
We have a mathematical symbol for the quantifier ‘for all’, which is ‘∀’.  So the 
proposition above can be written as ∀ is called the 

universal quantifier. 

‘(∀ x ∈ U)q(x)’, or ‘q(x), ∀ x ∈ U’. 
 
An example of the use of the existential quantifier is the true statement. 
 
(∃ x ∈ R) (x + 1 > 0), which is read as ‘There exists an x in R for which x + 1 > 0.’. 
 
Another example is the false statement 

(∃ x ∈N) (x - 
2
1

= 0), which is read as ‘There exists an x in N for which x - 
2
1

= 0.’. 

 
An example of the use of the universal quantifier is (∀ x ∉ N) (x2 > x), which is read 
as ‘for every x not in N, x2 > x.’. Of course, this is a false statement, because there is 
at least one x∉ N, x ∈ R, for which it is false. 
 
We often use both quantifiers together, as in the statement called Bertrand’s 
postulate: 

(∀ n ∈ N\ {1}) ( ∃ x ∈ N) (x is a prime number and n < x < 2n). 
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Elementary Logic In words, this is ‘for every integer n > 1 there is a prime number lying strictly between 
n and 2n.’ 
 
As you have already read in the example of a child in the class, 
( ∀ x ∈U)p(x) is logically equivalent to ~ ( ∃ x ∈ U) (~ p(x)).  Therefore, 
~(∀ x ∈ U)p(x) ≡ ~~ (∃ x ∈U) (~ p(x)) ≡ ( ∃ x ∈ U) ( ~ p(x)). 
 
This is one of the rules for negation that relate ∀ and ∃.  The two rules are  

~ (∀ x ∈ U)p(x) ≡ (∃ x ∈ U) (~ p(x)), and 
~ (∃ x ∈ U)p(x) ≡ (∀ x ∈ U) (~ p(x)) 

 
Where U is the set of values that x can take. 
 
Now, consider the proposition 
 
‘There is a criminal who has committed every crime.’ 
 
We could write this in symbols as 

(∃ c ∈A) ( ∀ x ∈ B) (c has committed x) 
Where, of course, A is the set of criminals and B is the set of crimes (determined by 
law). 
 
What would its negation be?  It would be 

~ (∃ c ∈ A) (∀ x ∈ B) (c has committed x) 
Where, of course, A is the set of criminals and B is the set of crimes (determined by 
law). 
 
What would its negation be?  It would be 

~ (∃ c ∈ A) (∀ x ∈ B) (c has committed x) 
≡ (∀ c ∈ A) [~ (∀ x ∈B) (c has committed x) 
≡ (∀ c ∈ A) (∃ x ∈ B) ( c has not committed x). 

 
We can interpret this as ‘For every criminal, there is a crime that this person has not 
committed.’. 
 
These are only some examples in which the quantifiers occur singly, or together.  
Sometimes you may come across situations (as in E23) where you would use ∃ or ∀ 
twice or more in a statement.  It is in situations like this or worse [say, (∀ xi ∈ U1) (∃ 
x2 ∈ U2) (∃ x3 ∈ U2) (∃ x3 ∈ U3)(∀ x4 ∈ U4) … (∃ xn ∈ Un)p] 

A predicate can be a function in 
two or more variables. 

where our rule for negation comes in useful.  In fact, applying it, in a trice we can say 
that the negation of this seemingly complicated example is 

(∃ x1 ∈U1) (∀ x2 ∈ U2 ) (∀ x3 ∈ U3)(∃ x4 ∈ U4) …(∀ xn ∈ Un ) (~ p). 
 
Why don’t you try some exercise now? 
 

E23) How would you present the following propositions and their negations using 
logical quantifiers?  Also interpret the negations in words. 

 i) The politician can fool all the people all the time. 
 ii) Every real number is the square of some real number. 
 iii) There is lawyer who never tell lies. 
 
E24) Write down suitable mathematical statements that can be represented by the 

following symbolic propostions. Also write down their negations.  What is the 
truth value of your propositions? 

 i) (∀ x) (∃ y)p 
 ii) (∃ x) (∃ y) (∀ z)p. 
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Propositional Calculus And finally, let us look at a very useful quantifier, which is very closely linked to ∃.  
You would need it for writing, for example, ‘There is one and only one key that fits 
the desk’s lock.’ In symbols.  The symbol is ∃! X which stands for ‘there is one and 
only one x’ (which is the same as ‘there is a unique x’ or ‘there is exactly one x’). 
 
So, the statement above would be (∃! X ∈ A) ( x fits the desk’s lock), where A is the 
set of keys. 
 
For other examples, try and recall the statements of uniqueness in the mathematics 
that you’ve studied so far.  What about ‘There is a unique circle that passes through 
three non-collinear points in a plane.’?  How would you represent this in symbols? If 
x denotes a circle, and y denotes a set of 3 non-collinear points in a plane, then the 
proposition is 

(∀ y ∈ P) (∃! X ∈ C) (x passes through y). 
 
Here C denotes the set of circles, and P the set of sets of 3 non-collinear points. 
And now, some short exercises for you! 
 

E25) Which of the following propositions are true (where x, y are in R)? 
 i) (x ≥ 0) → ( ∃ y) (y2 = x) 
 ii) (∀ x) (∃! y) (y2 =x3) 
 iii) (∃x) (∃! y) (xy = 0) 
 
Before ending the unit, let us take quick look at what e have covered in it. 
 

1.6 SUMMARY 

In this unit, we have considered the following points. 

1.   What a mathematically acceptable statement (or proposition) is. 
2.   The definition and use of logical connectives: 
     Give propositions p and q, 

i) their disjunction is ‘p and q’, denoted by p ∨ q; 
ii) their exclusive disjunction is ‘either p or q’, denoted by p ⊕ q; 
iii) their conjunction is ‘p and q’, denoted by p ∧ q; 
iv) the negation of p is ‘not p’, denoted by ~ p; 
v) ‘if p, then q’ is denoted by p → q; 
vi) ‘p if and only if q’ is denoted by p ↔ q; 

3.    The truth tables corresponding to the 6 logical connectives. 
4. Rule of precedence : In any compound statement involving more than one 

connective, we first apply ‘~’, then ‘∧’, then ‘∨’ and ‘⊕’, and last of all ‘→’ and 
‘↔’. 

5.   The meaning and use of logical equivalence, denoted by ‘≡’. 
6.   The following laws about equivalent propositions: 
      i) De Morgan’s laws: ~ (p ∧ q) ≡ ~ p ∨ ~ q 
     ~ (p ∨ q) ≡ ~ p ∧ ~ q 
     ii) Double negation law: ~ (~p) ≡ p 
    iii) Idempotent laws: p ∧ p ≡ p, 
                 p  ∨ p ≡ p 
    iv) Commutativity:           p ∨ q ≡ q ∨ p 
     p ∧ q ≡ q ∧ p 
     v) Associativity:  (p ∨ q) ∨ r ≡ p ∨ ( q ∨ r) 
     (p ∧ q) ∧ r ≡ p ∧ ( q ∧ r) 
     vi) Distributivity:  p ∨ ( q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 
     p ∧ (q ∨ r) ≡ ( p ∧ q) ∨ (p ∧ r) 
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Elementary Logic      vii) (~ p ∨ q) ≡ p → q (ref. E18). 
7.  Logical quantifiers: ‘For every’ denoted by ‘∀’, ‘there exist’ denoted by ‘∃’, and 
 ‘there is one and only one’ denoted by ‘∃!’. 
8.   The rule of negation related to the quantifiers: 
       ~ ( ∀ x ∈U)p(x) ≡ (∃ x ∈ U) (~ p(x)) 
       ~ (∃ x ∈ U) p(x) ≡ (∀ x ∈ U) (~ p(x)) 
 
Now we have come to the end of this unit.  You should have tried all the exercises as 
you came to them.  You may like to check your solutions with the ones we have given  
below. 
 

1.7 SOLUTIONS/ ANSWERS 

E1) (i), (iii), (iv), (vii), (viii) are statements because each of them is universally true 
or universally false. 
(ii)  is a question. 
(v)  is an exclamation. 

 The truth or falsity of (vi) depends upon who ‘she’ is. 
 (ix)  is a subjective sentence. 
             (x)  will only be a statement if the value(s) n takes is/are given. 

 Therefore, (ii), (v), (vi), (ix) and (x) are not statements. 
 
E2) The truth value of (i) is F, and of all the others is T. 
 
E3) The disjunction is 

 ‘2+3 = 7 or Radha is an engineer.’. 
 Since ‘2+3 = 7’ is always false, the truth value of this disjunction depends on 

the truth value of ‘Radha is an engineer.’. If this is T, them we use the third row 
of Table 1 to get the required truth value as T. If Radha is not an engineer, then 
we get the required truth value as F. 

 
Table 9: Truth table for ‘exclusive or’ 

 
p q p ⊕ q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
T 
T 
F 

 
E4) p will be a true proposition for x ∈ ] –2, ∞ [ and  
 x ≠ 4, i.e., for x ∈] –2, 4 [ U ] 4, ∞ [. 
 
 
E5) i) 0 – 5 = 5 

ii) ‘n is not greater than 2 for every n ∈ N.’, or ‘There is at least one n n ∈ N 
for which n ≤ 2.’ 

iii) There are some Indian children who do not study till Class 5. 
 
E6) Table 10: Truth table for negation 

 
  p ~ p 

T 
F 

F 
T 

 
 
 
E7) p → q is the statement ‘If x + y = xy for x, y ∈ R, then x ⊄ 0 for every ∈ Z’. 
 

 In this case, q is false.  Therefore, the conditional statement will be true if p is 
false also, and it will be false for those values of x and y that make p true. 
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So, p → q is false for all those real numbers x of the form ,

1−y
y

 where  

y ∈R \{1}. This is because if x = 
1−y

y
 for some y ∈ R \{1}, then x + y = xy, 

i.e., p will be true. 
 
E8)  i) p → q, where p : ∆ABC is isosceles.  If q is true, then p → q is true.  If q is   

false, then p → q is true only when p is false. So, if  ∆ABC is an isosceles            
triangle, the given statement is always true. Also, if  ∆ABC is not isosceles, 
then it can’t be equilateral either. So the given statement is again true. 

 
ii)  p : a is an integer. 

            q : b is an integer. 
  r : ab is a rational number 
  The given statement is (p ∧ q ) ↔ r. 
  Now, if p is true and q is true, then r is still true. 
   
  So, (p ∧ q) ↔ r will be true if p ∧ q is true, or when p ∧ q is false and r is 

 false. 
  In all the other cases (p ∧ q) ↔ r will be false. 
  
 iii) p : Raza has 5 glasses of water. 
  q : Sudha has 4 cups of tea. 
  r : Shyam will pass the math exam. 
   
  The given statement is (p ∧ q) → ~ r. 
  This is true when ~ r is true, or when r is true and p ∧ q is false. 
  In all the other cases it is false. 
  
 iv) p : Mariam is in Class 1. 
  q : Mariam is in Class 2. 
   
  The given statement is p ⊕ q. 
  This is true only when p is true or when q is true. 
 
E9) There are infinitely many such examples.  You need to give one in which p is 

true but q is false. 
 
E10) Obtain the truth table.  The last column will now have entries TTFTTTTT. 
 
E11) According to the rule of precedence, given the truth values of p, q, r you should 

first find those of ~ r, then of q ∧ ~ r, and r ∧ q, and p → q ∧ ~ r, and finally of 
(p → q ∧ ~ r) ↔ r ∧ q. 

  
 Referring to Table 5, the values in the sixth and eighth columns will be replaced 
 by 
 
 
 
  

r ∧ q 
T 
F 
F 
F 
T 
F 
F 
F 

p → q ∧ ~ r ↔ r ∧ q 
F 
F 
T 
T 
T 
F 
F 
F 
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Elementary Logic E12) They should both be the same, viz., 
 

p q r ~ r p ∧ q (p ∧ q) ∨ (~ r) 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
F 
F 
T 
T 
F 
F 

T 
F 
T 
F 
T 
F 
T 
F 

F 
T 
F 
T 
F 
T 
F 
T 

T 
T 
F 
F 
F 
F 
F 
F 

T 
T 
F 
T 
F 
T 
F 
T 

 
E13) i) (~ p) ∨ q 

 ii) (~ q) → (~ p) 
iii) (p → q) ↔ [(~p) ∨ q] 
iv)  [(p ⊕ (q ∧ r) → [(~ p) ∨ q]] ↔ (p ∧ r) 

 
E14) a) 
 
  
 
  

p ~ p ~ (~ p) 
T 
F 

F 
T 

T 
F 

 
 The first and third columns prove the double negation law. 
  
 b) p q p ∨ q q ∨ p 

T 
T 
F 
F 

T 
F 
T 
F 

T 
T 
T 
F 

T 
T 
T 
F 

 
 
 
 
 
 The third and fourth columns prove the commutativity of ∨. 
 
E15) For any three propositions p, q, r: 
 i) p ≡ p is trivially true. 

ii) if p ≡ q, then q ≡ p ( if p has the same truth value as q for all choices of 
truth values of p and q, then clearly q has the same truth values as p in all the 
cases.  
iii) if p ≡ q  and q ≡ r, then p ≡ r ( reason as in (ii) above). 
 
Thus, ≡ is reflexive, symmetric and transitive. 

 
 
E16)  

p q ~ p ~ p ∨ q p → q 
T 
T 
F 
F 

T 
F 
T 
F 

F 
F 
T 
T 

T 
F 
T 
T 

T 
F 
T 
T 

 
The last two columns show that [(~p) ∨ q] ≡ (p → q). 

 
E17) i)  

  p Ƭ p ∨ Ƭ 
T 
F 

T 
T 

T 
T 

 

The second and third columns of this table show that p ∨ Ƭ = T. 
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ii) 

   p Ƒ p ∧ Ƒ 
T 
F 

F 
F 

F 
F 

 
 
 
The second and third columns of this table show that p ∧ Ƒ = F. 

 You can similarly check (ii) and (iii). 
 

E18)   ~ (~ p ∧ q) ∧ (p ∨ q) 
      ≡(~(~p)∨ ~ q) ∧ (p ∧ q), by De Morgan’s laws. 
          ≡ (p ∨ ~ q) ∧ (p ∨ q), by the double negation law. 
           ≡ p ∨ (~ q ∧ q), by distributivity 
          ≡ p ∨ Ƒ, where Ƒ denotes a contradiction 
          ≡ p, using E 19. 
 
E19)   p: It is raining.  
          q: Nobody can go to see a film. 
         Then the given proposition is 
          [p ∧ (p → q)] → q 
         ≡ p ∧ (~ p ∨ q) → q, since (p → q) ≡ (~ p ∨ q) 
        ≡ ( p ∧ ~ p) ∨ (p ∧ q) → q, by De Morgan’s law 
        ≡ Ƒ ∨ (p ∧ q) → q, since p ∧ ~ p is a contradiction 
        ≡ (Ƒ ∨ p) ∧ (F ∨ q) → q, by De Morgan’s law 
        ≡ p ∧ q → q, since Ƒ ∨ p ≡ p. 
       which is a tautology. 
 
E20)   There are infinitely many examples.  One such is: 

‘If Venkat is on leave, then Shabnam will work on the computer’.This is of the 
form p → q. Its truth values will be T or F, depending on those of p and q.  

 
E21)  i) (∀ t ∈ [0, ∞[) (∀ x ∈ H)p(x,t) is the given statement where p(x, t) is the  

predicate ‘The politician can fool x at time t second.’, and H is the set of 
human beings. 
Its negation is (∃ t ∈ [0, ∞[) (∃ x ∈ H) (~ p(x, t)), i.e., there is somebody 
who is not fooled by the politician at least for one moment. 

          
 ii)  The given statement is 

(∀ x ∈ R) (∃ y ∈R) (x = y2). Its negation is 
 (∃ x ∈R) (∀ y ∈ R) ( x ≠ y2), i.e., 
 there is a real number which is not the square of any real number. 

 iii) The given statement is 
(∃ x ∈ L) (∀ t ∈ [0, ∞[)p(x, t), where L is the set of lawyers and p(x, t) : x 
does not lie at time t. The negation is 
(∀ x ∈ L) (∃ t ∈ [0, ∞[) (~p), i.e., every lawyer tells a lie at some time. 

 
E22)   i) For example, 

( ∀ x ∈ N) (∃ y ∈ Z) (
y
x
∈ Q) is a true statement. Its negation is 

∃ x ∈N) (∀ y ∈ Z) ∉
y
x( Q ) 

You can try (ii) similarly. 
 
E23) (i), (iii) are true. 
 (ii) is false (e.g., for x = -1 there is no y such that y2= x3). 
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Elementary Logic (iv) is equivalent to (∀ x ∈ R) [~ (∃! y ∈ R) (x + y = 0)], i.e., for every x there 
is no unique y such that x + y = 0.  This is clearly false, because for  

 every x there is a unique y(= - x) such that x + y = 0. 


	UNIT 1 PROPOSITIONAL CALCULUS
	
	
	1.1OBJECTIVES


	1.2PROPOSITIONS
	Table 1: Truth table for disjunction
	Table 3: Truth table for implication
	Table 4: Truth table for two-way implication.
	Table 6
	Table 7


	Table 8
	
	
	
	
	Table 9: Truth table for ‘exclusive or’



	?
	ƒ



