

5

Object Oriented

Programming UNIT 1 OBJECT ORIENTED PROGRAMMING

Structure Page Nos.

1.0 Introduction 5

1.1 Objectives 5
1.2 Program and Programming 6

1.3 Programming Languages 8

1.4 Structured Programming Paradigm 9
1.5 Object-Oriented Programming Paradigm 11

1.6 Structured Vs. Object-Oriented Programming 12

1.7 Object-Oriented Programming Concepts 13

1.8 Benefits of OOPs 20
1.9 Summary 21

1.10 Answers to Check Your Progress 22

1.11 Further Readings 23

1.0 INTRODUCTION

The computer programs are the means used by human beings for communication with

the machines especially the computers. As you all know, programs or the software

contain instructions for the hardware to accept inputs, to process those inputs

according to the instructions and to produce information as per the instructions
contained in the program. The term ‘programming’ today is used to define the

solution to a specific problem to be solved with the help of programs and it is said to

define its solutions in terms of its design, creation, testing, debugging, implementation
and its maintenance. Throughout the history of programming, ever increasing

complexity of the problems to be solved using computers has encouraged the

researchers and developers to evolve better means to manage this complexity.
Complexity and intended areas of application coupled with some other factors have

led to the evolution of a number of programming paradigms. Various programming

languages are in use today depending upon various existing programming paradigms.

The structured programming and the Object-Oriented Programming (OOP) paradigms

are the two paradigms that have been drawing attention of programmers for last so

many years. The term OOP was used by Xerox PARC for the first time in its
programming language, Smalltalk referring to the usage of objects as computational

units for processing. The language Smalltalk itself got its inspiration from another

OOP language called Simula 67 developed under the aegis of Simula Project in late

60s. The feature of inheritance introduced for the first time in Smalltalk allowed it to
surpass both Simula 67 as well as other analog programming systems. Simula 67 and

Smalltalk paved the way for many other OOP languages including C++ by 1980s.

This unit starts with a discussion on what a program is and what the programming is

all about. It further highlights various important programming paradigms focussing

basically on the structured and OOP paradigms. Subsequently, you will learn the main
concepts involved in the OOP have been presented along with the benefits of OOP.

1.1 OBJECTIVES

After going through this Unit, you will be able to:

 understand the concepts of program and programming;

6

Basics of Object Oriented

Programming & C++

 know about various major computer programming paradigms;

 explain the structured and OOP paradigms and to appreciate the differences

between these two;

 gain insight into various concepts that support the OOP; and

 describe the benefits of OOP.

1.2 PROGRAM AND PROGRAMMING

As you might be aware, the two essential components of any computer system are

hardware and software. Both hardware and software have their own sets of

functionalities which can be interdependent or independent of each other. A computer

system is designed to produce the desired results by making the functionalities of both
the hardware and the software to converge. The hardware is what we can see, touch

and feel e.g. keyboard, mouse, visual display units like monitors, printers etc. Once it

has been designed and manufactured to provide a certain set of functionalities, it can
not be modified easily. Any modification in the hardware requires lot of effort, time

and money. That is why we don’t change our hardware very frequently. If the

computers are required to carry out only a few predefined operations, these can be
very easily embedded in the design of its hardware. But this kind of a computer

completely lacks flexibility. In order to provide flexibility to perform some different

operation in a computer, most of the existing hardware requires to be replaced with a

newer one; whenever a new operation is added or older operations are to be
abandoned or modified. Therefore, a computer system always contains a minimum

basic hardware which is used by the software to provide lot of flexibility of

operations. The software can be modified / replaced with lesser effort, time and
money.

As such, a computer is essentially a data processing machine which requires two kinds

of inputs for its operations and these are: data and instructions. The hardware of a
computer can not produce the desired results unless it is given the requisite

instructions and data by the user(s). The data is what needs to be processed by the

hardware and the instructions (from within the set of its functionalities) tell this
(minimum basic) hardware how to process that data step by step within the realms of

set of functionalities so that expected results are achieved. Do you know what is

software all about? The software deals with the instructions. The examples of
software are Microsoft Office, Microsoft Windows 7, Red Hat Linux, Railways

Reservation System, Microsoft Internet Explorer, Google Search Engine etc.

A program as an independent entity or as part of a software is intended to instruct the
hardware to carry out specific task(s) to the satisfaction of the user(s) by providing

specific outcomes. So how do you define a program? A program can be defined to be

a set of instructions written in a programming language which are given in a fixed
sequence to the hardware of a specific computer and executed by its hardware to

produce predetermined and expected outcomes. The instructions in a program are

written mostly in natural languages (e.g. English, Hindi, French, German, and Chinese
etc.) following the syntax (form) and semantics (meaning) of the programming

language chosen for writing the program. There are a variety of programming

languages available for writing the programs e.g. BASIC, C, C++, Java, Prolog, Lisp,

HTML, PHP etc. The sequence of instructions is very important because if the
sequence is not correct, the expected results cannot be achieved by the program.

Now, let us see what does programming mean to us? The meaning of the term
programming (or computer programming) has been changing rapidly since the idea of

a first program was envisaged. Initially the computers were used to solve the

mathematical problems with the help of calculations. Hartee in 1950 suggested that

A software is an

integrated set of

interrelated
programs which

instruct the

hardware as to what
to do and how; and

is responsible for

getting the desired

jobs executed by the
computer to

produce the

predetermined

outputs.

7

Object Oriented

Programming
the process of preparing a calculation for a machine can be broken down into two
parts, ‘programming’ and ‘coding’. He described programming as the process of

drawing up the schedule of the sequence of individual operations required to carry out

the calculation. Before the availability of assemblers, coding was in fact, a very
tedious and time consuming task. Soon, programming became the major activity in

this process.

In 1958, Booth proposed that the process of organizing a calculation can be divided
into two parts, a) the mathematical formulation, and b) the actual programming. With

the passage of time, the definition of programming has kept on evolving and at

present programming is considered to be the process of writing programs and may
include activities as diverse as designing, writing, testing, debugging and maintaining

the code of a program. In normal conversation, programming is described as the

process of instructing the computer to do something desired and useful for the user
with the help of a programming language.

 Check Your Progress 1

Objective type Questions:

1) How are hardware and software related in a general purpose computer?

a) They are independent of each other

b) Hardware has to be dependent on software

c) Software (System) has to be dependent on hardware
d) None of these

2) Which is of the following is not a part of the definition of the program?

a) Instructions b) Sequence
c) Data d) Desired output

3) Which one of the following is not a programming language?

a) C++ b) HTML
c) BASIC d) English

Answers to short type questions:

1) Why can hardware of a computer not produce the desired results in the absence

of instructions (program / software)?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) How is a program related to software?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3) Why does hardware not provide flexibility of operations to the user(s)?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

8

Basics of Object Oriented

Programming & C++

1.3 PROGRAMMING LANGUAGES

You must appreciate the fact that the programming languages are created by, we,

human beings. These languages are used to communicate instructions to the machines

especially computers so that the programs can control the behaviour of the hardware
of the machines to get desired results. Basically, the hardware of the computers

understands only the language of the hardware which is called the machine language.

The hardware is unable to understand and decipher any program written in any other
programming language. Moreover, every type of a CPU has its own machine

language. Therefore, in order to make the hardware of a computer understand the

instructions contained in a program written in any other programming language, a

mechanism called ‘translator’ is required. This translator converts the program written
in programming languages other than the native machine language of the CPU

(hardware) into the native machine language of a particular CPU on which this

program is intended to be executed. Every programming language must have its own
translator for the programs written in it to be executed or run on the computer

hardware. Various types of translators available can be categorized into assemblers,

interpreters or compilers.

The primitive or the first generation of programming languages were called machine

languages and the symbols like ‘0’ and ‘1’ were used to write programs under this

category of programming languages. The second generation of programming
languages were called the assembly languages and mainly used mnemonics to

construct a program. Both of these generations of programming languages were CPU

dependent i.e., every type of a CPU will have its own machine and assembly

language. The third generation of programming languages was called high level
languages as these programming languages were independent of the CPU of the

hardware being used and the instructions written in the programs were just like the

instructions given in natural languages. The third generation languages are known as
3GL languages. The current generation of the programming languages are called the

fourth generation languages or the 4GLs. These languages represent the class of

programming languages that are closest to the human (natural) languages.

Based on the intended use of domain of use, the programming languages are broadly

classified as imperative programming languages where imperative sentences are used
in a program to issue commands in terms of instructions; and declarative

programming languages where declarative instructions are used in a program to assert

the desired result. But a more common paradigm classifies these languages into

imperative, functional, logic programming and object-oriented languages. Table 1.1
presents the summary of main features of these programming paradigms.

Table 1.1: Summary of Main Features of Programming Paradigms

Paradigm Key

Concepts

Program Program Execution Result

Imperative Command

(instruction)

Sequence of

commands

Execution of

commands

Final state of

computer memory

Functional Function Collection of

functions

Evaluation of

functions

Value of the main

function

Logic Predicate

Logic formulas:

axioms & a theorem

Logic proving of the

theorem

Failure or Success

of proving

Object-

oriented

Object Collection of classes

of objects

Exchange of

messages between
the objects

Final state of the

objects

9

Object Oriented

Programming
Table 1.2 shows some of the examples of programming Paradigms.

Table 1.2: Programming Languages under Programming Paradigms

Paradigm Example

Imperative Algol, Pascal, C, Ada

Functional Lisp, Refal, Planner, Scheme

Logic Prolog

Object-
oriented

Smalltalk, Eiffel, C++, Java

There exist certain programming languages that inherit the features of more than one
paradigms and the examples of some modern programming languages are presented in

Table 1.3.

Table 1.3: Programming Languages under Two Programming Paradigms

Paradigms Example

Imperative + Object-
oriented

Object Pascal, C++, Java, Ada-
95

Functional + Object-

oriented

Clos

Logic + Object-oriented Object Prolog

1.4 STRUCTURED PROGRAMMING PARADIGM

The structured programming paradigm is a sub discipline of procedural programming

under the category of imperative programming paradigm. Most of the present day

procedural programming languages include the features that encourage structured
programming. Do you know who proposed this paradigm in the first instance? It was

first proposed by two mathematicians Corrado Bohm and Guiseppe Jacopini who

proposed and demonstrated that a computer program may contain just three structures
namely decisions, sequences, and loops.

Any program can be created by breaking large programs into smaller modular routines
and imposing these logical structures. That is why structured programming is also

sometimes known to follow the concepts of modular programming. This paradigm

generally follows the top down approach where the complex programming blocks are

broken down into smaller blocks maintaining a well defined structure and
organization of the overall program. It discourages the use of global variables and

instead encourages to use variables that are local to each of the blocks. Moreover, the

use of GOTO statement is completely forbidden in the languages supporting this
paradigm. Some of the languages that follow this paradigm are Pascal, C, C++, Java,

Ada etc. in contrast to non-structured programming languages like BASIC, COBOL,

FORTRAN etc.

The structured programming follows the principle of divide and conquer. A solution

of a problem can be said to consist of (or include) a set of tasks, on the same lines, a

program can also be designed to perform a set of tasks by dividing it into the task
performing blocks.

Under unstructured programming paradigm, a) mostly, all the program code is written
in a single continuous main program, b) logic is difficult to follow within the program,

Structured

paradigm is
based on the

principle of

building a

program from
logical

structures.

10

Basics of Object Oriented

Programming & C++

c) code from other programs is hard to incorporate, d) it is difficult to test specific
portions of a program, and e) program is difficult to debug and maintain. In contrast,

structured programming is defined as a programming paradigm which follows certain

set of quality standards to create programs that are more reliable and readable; and

easier to maintain. Under this paradigm, the aim is that before the code is written, the
structure of a program is required to be defined clearly and a decision to attach other

programs and libraries be taken.

Some of the major advantages and disadvantages of structured programming are given

below:

1.4.1 Advantages of Structured Programming

a) Complexity can be reduced using the concepts of divide and conquer.

b) Logical structures ensure clear flow of control.

c) Increase in productivity by allowing multiple programmers to work on different

parts of the project independently at the same time.

d) Modules can be re-used many times, thus it saves time, reduces complexity, and
increases reliability.

e) Easier to update/fix the program by replacing individual modules rather than

larger amounts of code.

f) Ability to either eliminate or at least reduce the necessity of employing GOTO
statement.

1.4.2 Disadvantages of Structured Programming

a) Since GOTO statement is not used, the structure of the program needs to be
planned meticulously.

b) Lack of encapsulation.

c) Same code repetition.

d) Lack of information hiding.

e) Change of even a single data structure in a program necessitates changes at many
places throughout it, and hence, the changes become very difficult to track even in

a reasonably sized program.

f) Not much reusability of code.

g) Can support the software development projects easily up to a certain level of
complexity. If complexity of the project goes beyond a limit, it becomes difficult

to manage.

1.5 OBJECT-ORIENTED PROGRAMMING

PARADIGM

Simula was the first programming language developed in the mid-1960s to support the

object-oriented programming paradigm followed by Smalltalk in the mid-1970s that is
known to be the first ‘pure’ object-oriented language. Eiffel, Java, C++, Object

Pascal, Visual Basic, C# etc are the other OOP languages that came into existence

later on, all having different complexities of syntax and dynamic semantics.

11

Object Oriented

Programming
The main motive of the developers of programming languages over the years has
always been to create such programming languages that are close to human (i.e.

natural) languages. The way we perceive and interact with the things in our day-to-

day lives, the representation of programming constructs should closely match the
same. Hence came into existence the concept of ‘objects’ and ‘object-oriented

programming paradigm’.

Every object has certain defining properties which distinguish it not only from
different types of other objects but from the similar types of objects too. If we take an

example of an object like a ball pen, its defining property may be the colour in which

it can write, length, shape, unique manufacturing code etc. Some of these properties
not only distinguish the ball pen object from the tooth brush object but also

distinguish individual ball pens objects. It must be understood clearly that no two

objects in the physical world, even of same type, are identical since no two objects
can have the value of all its defining properties same.

Likewise, every object has certain functions associated with it and all similar types of

objects are supposed to support these. Although, Some of these functions can be the
same as associated with different types of objects. In case of a ball pen, one of the

functions associated with each type of ball pen object, is to write and another

associated function is the provision to hold it in hands conveniently. All the ball pen
objects support both these functions. Incidentally, all the tooth brush objects also

support the function of holding them in the hands conveniently but, in addition,

support other functions like brushing the teeth too.

This concept of objects borrowed from the real world has been the basis of the object-

oriented programming (OOP) paradigm and this paradigm is a direct consequence of

an effort to have a programming language closely matching the human behaviour.
This OOP paradigm is all about creating program(s) dealing with objects where these

objects interact with one another to achieve the overall objectives of the program.

Every object in the programs has certain defining properties called attributes (or
instance variables) possessing supporting values for each of the attributes and some

associated functions (normally called methods or operations). As in the real world

objects, no two objects in a program can have the same values of all the attributes.

At times, instead of dealing with individual objects, it is convenient to talk

collectively about a group of similar objects where all the objects of this group will

have the same set of attributes and methods. In the object-oriented programming
paradigm parlance, this collection of objects corresponding to a particular group is

known as a class. All programs under this paradigm contain a description of the

structure (corresponding to attributes) and behaviour (corresponding to methods) of so
called classes. In a program, various objects are created from these classes. The

process of creation of an object from a class is called ‘instantiation’ and the object

created is known as an instance of the class. Every object created will have a ‘state’

associated with the description of the structure in the class from which it has been
instantiated. The state of an object is defined by the set of values assigned to its

corresponding attributes (and stored in the memory) of the object.

Therefore, we can say that a class is used to represent a set of objects having same

structure and behaviour. So, how do we define a class? A class is defined to be a

template or a prototype so that a collection of attributes and methods can be described
within it and this definition can be used for creating different objects within a

program. It is this concept of encapsulating the data and methods within the objects

that provides the programmers with flexibility within the OOP paradigm because an

object can be extended or modified without making changes to its external interface or
other classes/objects in the program. Various classes may exhibit features like

inheritance and polymorphism of methods.

The real world can be

considered to be made up

of various objects with
which the human beings

regularly interact e.g. a

ball pen, a tooth brush, a

vehicle, a foot bear or a
house etc.

12

Basics of Object Oriented

Programming & C++

When a program is executed, various objects are created with their corresponding

states and these objects interact with one another by exchanging messages, the

messages thereby causing the modification of their states. Modification in the state of

an object is said to have occurred when the values of one or more of its attributes
(instance variables) change due to the interaction. All the objects created are made to

exhibit a behaviour through their corresponding methods such that the program

produces the desired results once its execution is over. A program in this paradigm
therefore, becomes a collection of cooperating and interacting objects instead of just a

list of objects.

For the sake of an example, a Maruti Wagon-R could be an object. It would have a

state depend upon whether its engine is running or not. Also it would have a

behaviour, like starting ignition of its engine or stopping the ignition of its engine and

this behaviour is responsible for changing its state from ‘engine is not running’ to
‘engine is running’ or from ‘engine is running’ to ‘engine is not running’.

In a different example, we can take object ABC representing a student having a state
defined by its attribute named RESULT. A part of the behaviour of this object could

be reflected through ‘compute result’. If this student has not appeared in the

examination yet, the state of this object defined by the attribute RESULT may be
NOT DECLARED. But once this student has appeared in the examination and the

marks obtained by this student are available, the behaviour of this object changes the

state of the object ABC by using the method ‘compute result’ from NOT

DECLARED to either FAIL or PASS with percentage of marks.

1.6 STRUCTURED Vs OBJECT-ORIENTED

PROGRAMMING

The OOP, can be considered to be a type of structured programming which uses

structured programming techniques for program flow, but adds more structure for data
to be modelled. We have highlighted some of the basic differences between the two

as under:

1) OOP is closer to the phenomena in real world due to the use of objects whereas
structured programming is a bit away from the natural way of thinking of human

beings.

2) Structured programming is a subset of object-oriented programming. Therefore,
OOP can help in developing much larger and complex programs than structured

programming.

3) Under structured programming, the focus of a program is on procedures or
functions (behaviour) and the data is considered separately (data structures are not

well organized within the program) whereas in OOP, data (structure) and methods

(behaviour) both are in collective focus.

4) In OOP, the basic units of manipulation are the objects whereas in case of
structured programming, functions or procedures are the basic units of

manipulation.

5) The focus of a program is on manipulation of data in structured programming
whereas the focus of OOP is on both data (structures and states of objects) as

well as on its manipulation (behaviour of objects).

6) In OOP, data is hidden within the objects and its manipulation can be strictly

controlled whereas in structure programming the data in the form of variables is
exposed to unintended manipulation too.

13

Object Oriented

Programming
7) The OOP promotes the reuse of classes and their parts of the code too. In addition,

it also supports the inheritance of state and behaviour. This feature is missing in

structured programming.

8) The OOP supports polymorphism of operations.
9) The concepts of OOP have got integrated with most of the prominent object-

oriented methodologies of software development in a better way and help in

reducing the development effort and time as compared with that of structured

methodologies based on structured programming.
10) The structured programming normally emphasized on single exit point in their

constituent functions or procedures. Since each function/procedure allocates some

memory to itself for storing the values of its variables and code, before the exit,
there must be a provision for deallocating this memory. Otherwise, more and

more of the memory gets occupied by each function/procedure and in large

programs, there may occur a shortage of memory for use by other
functions/procedures and the processing can get slower or even completely halted.

When in any function/procedure, memory is allocated, but not deallocated, a

memory leak is said to have occurred (the memory has leaked out of the

computer) in it.

1.7 OBJECT-ORIENTED PROGRAMMING

CONCEPTS

The Object-Oriented Programming is based on sound principles and provides the

developers of various object-oriented programming languages with a variety of new
concepts to be incorporated in those languages. Some of the commonly found

important concepts in most of the OOP languages are as given below:

Abstraction (data)

Abstraction is a technique which allows the hiding or elimination of the irrelevant;

and focussing on the essential. According to IEEE 1983 definition, abstraction is
defined as a view of a problem that extracts the essential information relevant to a

particular purpose and ignores the remainder of the information. There are different

levels of abstraction. As in real life, for an example of a car, a buyer would see the car
at a different level of abstraction, designer has different level of abstraction to look at

it, a mechanic sees it at another level of abstraction, a junk yard owner sees the car at

an altogether different level of abstraction. The buyer is interested in the colour,

mileage, shape, manufacturer etc; the designers are concerned about the minute details
like designing the fuel tank, ignition system, electrical parts and their wiring, breaking

system etc; a mechanic may be concerned about how to test the battery, how to open

and reconnect various parts etc, spare parts etc; and the junk yard owner is interested
only in how much reusable metallic and plastic parts are there in the car. If we,

therefore, apply the same concept of abstraction to a program in a given context, a

programmer hides or eliminates the irrelevant attributes and methods and use only the
attributes and methods that are relevant for a given class or an object.

If we take another example of a class ‘student’, the class may have plenty of attributes

like, name, roll number, father’s name, mother’s name, date of birth, class, year or

semester, course, marks obtained, address for correspondence, height, weight, colour

of hair, colour of eyes, size of the shoes they wear, no. of teeth, finger prints, IQ level
etc. The list can be very long. But, when we use this ‘student’ class in some program,

not many of these attribute would be required to be used. Only those attributes which

are of interest (i.e. the attributes that are required to define the state of the program at
any point of time during the execution of the program) shall be included in the

definition of the class and rest of these attributes shall never be used and hence be not

14

Basics of Object Oriented

Programming & C++

included in the program. Same is true for behaviour depicted by the methods of the
class ‘student’.

Information Hiding

Information or data hiding in an object is characterised by its knowledge of a design

decision which it hides from all other objects. The interface of an object is chosen to

reveal only the desired data or working of the object. According to the definition of

information/data hiding given by Booch in 1991, it is the process of hiding all details
of an object that do not contribute to its essential characteristics; typically, the

structure of an object as well as the implementation of its methods is hidden from

other objects. There can be two types of information hiding: functional information
hiding related to the hiding of implementation details of methods (behavioural

information of a particular object) and data hiding (structural information of a

particular object). As in the case of abstraction, there are varying degrees of

information hiding. Some languages like C++ also allow varying degree of visibility
of objects like public, private and protected. So the mechanism of information hiding

is said to provide a strictly controlled access to the information enclosed within the

capsule.

Encapsulation

In 1991, Rumbaugh and others defined encapsulation as consisting of separating the

external aspects of an object which are accessible to other objects, from the internal
implementation details of the object, which are hidden from other objects. According

to Booch, it is also known as information hiding and it prevents clients from seeing

the object’s inside view, where the behaviour of the abstraction is implemented. In

reference to classes and objects in OOP, encapsulation is the process of enclosing
within these classes and objects the attributes and the methods. It is the programmers

who specify what information in an object can be shared with other objects. Figure 1.1

illustrates the concepts of encapsulation and information hiding.

Figure 1.1: Encapsulation & Information Hiding Concept

Do you think information hiding and encapsulation mean the same thing? No,

information hiding cannot be treated as encapsulation, both are related but altogether

different aspects e.g. an array or a record structure also encloses the information but

this information cannot be said to be hidden. It is true that the encapsulation
mechanism like classes and objects hide information but these also provide visibility

of some of their information through well defined interfaces.

Classes and Objects

A class is a collection of similar entities which have same structure and exhibit same

behaviour. These are used to describe something in the real world like places,

Method 1 Method 2

Method 3 Method n

Data

Encapsulation refers to

how the
implementation details

of a particular class are

hidden from all objects

outside of the class.

15

Object Oriented

Programming
organizations, roles, things, occurrences etc. A class is said to describe the structure
and behaviour of these sets of similar entities called objects. As opposed to actual

objects, the class gives a general description of these objects like a template, blueprint

or a pattern; and contains the definitions of all the attributes and methods which will
become the part of each object created from the class. Only after a class has been

defined, specific instances of the class can be created and these instances are called

the instances of that class. The process of creation of these instances as objects of the

class is called instantiation. Table 1.4 cites certain examples of classes and their
objects for your ready reference.

 Table 1.4: Examples of Classes & Corresponding Objects

Type Example of Class Example of Object

Place Hill station Shimla

Organization University Department Computer Science

Occurrence Alarm Fire alarm

Role Teacher Manoj Kumar

Thing Car Maruti Wagon R

Figure 1.2 shows an example of a class having an identifier as ‘Teacher’, its

structure defined by attributes ‘Name’ of type ‘String’ and ‘Age’ of type
‘Integer’ depending upon the particular context. The behavior of this class in a

using abstraction is depicted by a single method ‘evaluate’. In this particular

context, the programmer is required to focus only on name and age of the
teachers as part of the structure of this class and in the evaluation method as part

of behavior of this class.

Figure 1.2: Concept of a Class and a Corresponding Object

In different contexts, there may be different sets of attributes and methods of

interest for the programmer. An object (instance) created from this class is also

shown in this figure having values of attributes ‘Name’ and ‘Age’, these values
of attributes at any point of time also describe the state of this object. The

behaviour of an object is defined by the set of methods which can be applied on

it.

Message Passing

In object oriented languages, you can consider a running program under execution as

a pool of objects where objects are created for ‘interaction’ and later destroyed when

their job is over. This interaction is based on ‘messages’ which are sent from one

object to another asking the recipient object to apply one of its own methods on itself
and hence, forcing a change in its state. The objects are made to communicate or

interact with each other with the help of a mechanism called message passing. The

methods of any object may communicate with each other by sending and receiving
messages in order to change the state of the object. An Object may communicate with

other objects by sending and receiving messages to and from their methods in order to

Teacher

Name: String

Age: Integer

evaluate()

{

 …

}

:Teacher

Name = Ajay

Age = 21

evaluate ()

{

 …

}

Class
Object

16

Basics of Object Oriented

Programming & C++

change either its own state or the state of other objects taking part in this
communication or that of both. An object can both send and receive messages.

The messages are sent and received by passing various variables among specific

methods using the signatures (a term that is not prevalent in common parlance) of the
methods. Every method has a well defined and structured signature. The signature of a

method is composed of: a) a type, associated with the variable whose value after

execution of the method, would be returned to the object that would invoke the
method; b) the types of a specific number of variables and the order associated with

these variables whose values would be passed to the method before execution of the

method starts. All these variables have a well defined format and corresponding
values at any instant of time available for communication during the execution of the

program. Figure 1.3 shows an example of a signature for a method ‘evaluate’.

Figure 1.3: Signature of a Method

Interface

Every class defines an interface for itself and its objects use only this interface for all

types of communications. We may say that an interface of a class or an object is the
collection of signatures of all the methods contained in the class or the object. It is

through this interface, the objects communicate with themselves or with other objects

by passing value of variables to and fro and hence, in the process, changing their own
state or hat of other objects or that of both. As the signatures of various methods of

an object are well structured and precisely defined, therefore, the interface of an object

also has a well defined precise structure. As you can see, figure 1.4 shows the

mechanism of message passing between two objects through their interfaces. Various
OOP languages have different mechanisms to implement the interfaces.

Figure 1.4: Objects Interacting through Interfaces

Association

The classes and hence the corresponding objects in OOP languages are in relationship

with one another. Various kinds of vital relationships are association, aggregation,
inheritance etc. An association is the term used to represent the relationships among

various objects of one or more classes. An illustration of association is given in figure

Object A Object B

Interfaces

Message Passing

Signature of Method (excluding the identifiers)

Return Type

Method Identifier

Types & Identifiers of Variables to be passed

String evaluate(int rollNo, String subjectName, int totalMarks, int passMarks);

17

Object Oriented

Programming
1.5. The association here has been represented by a simple straight line whereas the
classes have been represented by rectangles.

Figure 1.5: Association & Multiplicity among Classes

The term ‘multiplicity’ represented by a numerical specification, is used to indicate

how many objects of one side of an association are connected with how many objects

on the other side. Common categories of multiplicities have been enlisted in Table
1.5.

Table 1.5: Various Categories of Multiplicity

0..1 No instance, or at the most one instance

1 Exactly one instance

0..*, * Zero or more instances

1..* One or more instances

Aggregation is a special form of association. It is the composition of an object out of a
set of its parts. A university, for example, is an aggregation of departments,

employees, students, class rooms, faculty rooms, laboratories and so on. Some of

these parts may further be the aggregations of some other parts. Sometimes,

aggregation is also known as a ‘whole-part’ hierarchy (university is ‘whole’ and
department is a ‘part’) and represented as ‘has-a’ relationship (a university has-a

department).

Inheritance

Can you guess what inheritance is? Inheritance is a mechanism by virtue of which the
classes inherit the attributes and methods of some other class(s). In a sense, we can

say, inheritance is a way to reuse the code of some existing or already defined classes.

The classes, in this case, are said to have ‘a-kind-of’ and ‘is-a’ relationship with the

other classes. Using this property of OOP, one class can extend other classes by
including additional methods and/or attributes (variable). The original class is called

the ‘superclass’ of the extending class and the extended class is called the ‘subclass’

of the class that is being extended. The subclass is sometimes known with the name of
‘derived’ class and the superclass with the name of ‘base’ class. The derived or

subclasses classes can further be used to have their own derived subclasses. This kind

of a relationship of classes through inheritance gives rise to an inheritance hierarchy

of the classes. Can you explain, why?

As an example, if you take ‘car’ as a superclass; then you can treat SUV, sedan, sports

car, roadster as its subclasses. All or some of these subclass cars have some common
attributes (structure) and methods (behaviour). But the structure and behaviour of

these subclass cars is not restricted to those of the superclass ‘car’. A subclass car can

contain methods and attributes in addition to those inherited from the superclass ‘car’
e.g. a sports car will generally have only two doors whereas a sedan will have four.

The subclasses can also contain methods that override the methods they have inherited

to have unique implementation of these methods. Another example of inheritance can

be that of a ‘geometric figure’ as a superclass and a ‘circle’ and a ‘triangle’ as its
subclasses as shown in figure 1.6.

University

Department

Employee

 1..* 1..* 1 1

18

Basics of Object Oriented

Programming & C++

Figure 1.6: Inheritance among Classes

Various categories of Inheritance which are often used in OOP are single level, multi-

level, multiple inheritance etc.

Polymorphism

Polymorphism or the ability to appear in many forms, is one of the vital primary

characteristic concepts of OOP. ‘Poly’ means ‘many’ and ‘morph’ means ‘form’. In
reference to OOP, it is an ability of assigning different meanings to entities such as

variable, methods or objects so that these can be made to exhibit more than one form.

It provides the programmers with the flexibility of processing any object differently
depending upon their data types. Using this concept, a programmer can redefine

various methods of the classes derived from their base classes. Objects of different

types can receive the same message and respond in different ways provided these

objects have the same method definition (i.e. interface). The calling object, also
sometimes known as the client, need not know what type of object it is calling, the

only thing that it needs to know or ensure is that the called object has a method of a

specific name with defined arguments. Polymorphism is more often than not applied
to derived classes, where the methods of the parent class are replaced with those

having different behaviours. It is the concepts like inheritance and polymorphism that

together make OOP flexible and easy to extend.

Do you know how many categories of polymorphisms exist? There are two categories

of polymorphisms; static or compile-time and dynamic or run-time. In static

polymorphism, which form of the method (from among the various available forms) is
to be called and executed is decided during the time of compilation, the example

being ‘Method Overloading’. In method overloading, same method name having

different parameters is used more than once in the same class. Which method is to be
called and executed depends upon the parameters passed by the calling method and is

decided during the compilation of the program. The dynamic polymorphism is applied

in the form of method overriding which means there can exist two or more methods in

a program which have the same signature (name; return type; type, number and order

display()

move()

remove()

GeometricFigure

x: Integer

y: Integer

setRadius()

getPerimeter()

Circle

radius: Integer

display()

move()

setLength()

setBreadth()

Triangle

length: Integer

breadth: Integer

Superclass

Subclass

Inheritance

19

Object Oriented

Programming
of arguments to be passed) having different implementations. In figure 1.7 these two
types of polymorphisms are explained.

Figure 1.7: Two Different Types of Polymorphism

In addition to object-oriented programming, the programmers sometimes also use

object-based programming languages. So, how is object-based programming different

from object-oriented programming? According to Rumbaugh, object-oriented
programming should be supported by the languages which have at least the following

four features:

Method Overriding

class Square
{
 public int side;
 public double getArea(side)
 {
 return side * side;
 }
}

Class Cube
{
 public double getArea(side)
 {
 return side * side * side;
 }
 …
}

Base Class

Overridden methods

(with same signature but

different implementations)

Derived

Class

class

Method Overloading

public class Calculate
{
 public int multiply(int num1, int num2)
 {
 return num1 * num2;
 }
 public int multiply(int num1, int num2, int num3)
 {
 return num1 * num2 * num3;
 }
 …
}

Overloaded methods

(with same name but

different signatures)

20

Basics of Object Oriented

Programming & C++

a) Identity which means the quantization of data in terms of entities called the
objects that are discrete and distinguishable;

b) Classification into classes i.e. grouping of objects of same structure and

behaviour;

c) Polymorphism i.e. depiction of different behaviour of same operations on
different classes; and

d) Inheritance in terms of sharing of structure and behaviour among classes in a

hierarchical relationship.

But, what about the languages that support similar kinds of features? As such, there

are certain languages that may support some of these feature but not all. The
languages that support only some of these features like identity and classification (and

may be polymorphism too) do not qualify to be called object-oriented programming

languages. These programming languages are called object-based programming

languages. Visual Basic is one such programming language which supports objects
and classes but not inheritance and that is why it is called an object-based

programming language. In contrast, VB.NET is an object-oriented programming

language. Fortran 90 is another example of object-based programming language that
does not support inheritance. Another example is JavaScript, a language that does not

have classes. In this language, the objects can be made to inherit code and data

directly from the template objects.

1.8 BENEFITS OF OOP

By now, you might have understood the basic concepts of object-oriented
programming. Therefore, you are in a better position to appreciate the following as

some of the major benefits of OOP:

1) As OOP is closer to the real world phenomena, hence, it is easier to map real

world problems onto a solution in OOP.

2) The objects in OOP have the state and behaviour that is similar to the real world

objects.

3) It is more suitable for large projects.

4) The projects executed using OOP techniques are more reliable.

5) It provides the bases for increased testability (automated testing) and hence higher

quality.

6) Abstraction techniques are used to hide the unnecessary details and focus is only

on the relevant part of the problem and solution.

7) Encapsulation helps in concentrating the structure as well as the behaviour of

various objects in OOP in a single enclosure.

8) The enclosure is also used to hide the information and to allow strictly controlled

access to the structure as well as the behaviour of the objects.

9) OOP divides the problems into collection of objects to provide services for

solving a particular problem.

10) Object oriented systems are easier to upgrade/modify.

11) The concepts like inheritance and polymorphism provide the extensibility of the

OOP languages.

12) The concepts of OOP also enhance the reusability of the code written.

13) Software complexity can be better managed.

14) The use of the concept of message passing for communication among the objects

makes the interface description with external system much simpler.

15) The maintainability of the programs or the software is increased manifold. If
designed correctly, any tier of the application can be replaced by another provided

21

Object Oriented

Programming
the replaced tier implements the correct interface(s). The application will still

work properly.

Check Your Progress 2

Objective type Questions:

1) Which of the following is not a disadvantage of structured programming?

a) Availability of information hiding b) Lack of encapsulation

e) Non-availability of GOTO statement d) None of these

2) Which is of the following is not a concept associated with OOP?

b) Information hiding b) Clauses

d) Abstraction d) Message Passing

3) Which one of the following describe method overloading the best?

a) Same signature, different implementation
b) Same name, different signatures

c) Different name, same signatures

d) Different name, different signatures

Short Answer type Questions:

1) What is the signature of a method?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) Differentiate between information hiding and encapsulation.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3) What is the difference between object-oriented and object-based programming

languages?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.9 SUMMARY

The programs are the means through which we can make the computers produce the

useful desired outputs. Out of a variety of programming paradigms being used by
practitioners as well as the researchers, the structured and the object-oriented

programming paradigm and corresponding structured and object-oriented

programming have been in focus for quite some time now. In this unit, you studied

that the structured programming languages initially helped in coping with the inherent
complexity of the softwares of those times but later on, were found wanting in the

handing the same as far as the software of present days are concerned. In the backdrop

22

Basics of Object Oriented

Programming & C++

of this, you also studied the advantages and the disadvantages of the structured
programming.

Next, you were introduced to the concepts of object-oriented programming paradigm

and it was illustrated as to how this paradigm is closer to natural human thinking.
Subsequently, an overview of the differences between the structured and object-

oriented programming paradigms was presented to you so that you can clearly

understand these intricate differences. After that, the basic concepts of object-oriented
programming well supported by relevant illustrations were introduced to you. Here we

first defined abstraction, encapsulation and information hiding elucidating the

difference between the last two. It was followed by the illustrations of some more
concepts of object-oriented programming like classes, objects, message passing,

interface, associations, inheritance and polymorphism. In the end, you saw what the

various benefits of OOPs are and how can these help in producing good quality

software.

1.10 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress 1

Answers to Objective type Questions:

1) c 2) c 3) d

Answers to Short Answer type Questions:

1) The hardware of a computer does not do anything on its own unless it is provided
with instructions in the form of a program or software. These instructions are

decoded and executed by the hardware to produce the desired result after getting

the instructions from the user for doing so. Therefore, if no instructions are given

to the hardware by the user, the hardware will not be able to do anything and
hence the desired result will not be produced.

2) Software is a set of related programs which provide specific instructions to the

hardware so that the intended results are achieved when the software is used by
the computer hardware. A software may consist of a number of programs that are

related to each other in such a way that these programs shall be interacting with

each other while in execution. It is this interaction among various related
programs which helps users to get their intended goals achieved through the

execution of a particular software.

3) To provide any functionality through operations to the users, various hardware

components are needed to be interconnected based upon the circuit diagram
(design) and their operations need to be strictly controlled and synchronized

especially with reference to time. These components along with the defined

interconnections are then hardwired. Once the components are hardwired, they
can not be changed. Even if a small change in functionality through operations is

required to be carried out, a new circuit diagram needs to be designed and a new

set of components needs to be interconnected all over again. This process is very

expensive, wasteful and time consuming. In contrast, the software can be changed
any numbers of times without much hassles.

23

Object Oriented

Programming
Check Your Progress 2

Answers to Objective type Questions:

1) a 2) c 3) b

Answers to Short Answer type Questions:

1) The signature of a method consists of:

a) Return type of the method
b) Number of arguments to be passed

c) Types of each of these arguments

d) The sequence of these arguments

It is through the signature of a method, the mechanism of message passing is
supported for interaction within an object or among various objects of a program.

Whenever any method of an object intends to communicate with another method

of the same object or some other object, the message to be sent from the
transmitting object will have to adhere to the format of the signature of the

receiving method.

2) The mechanism of information hiding is said to provide a strictly controlled
access to the information enclosed within the capsule. Encapsulation is the

process of enclosing within classes and objects the attributes and the methods. But

information hiding cannot be treated as encapsulation, it is different e.g. an array

or a record structure also encloses the information but this information cannot be
said to be hidden. It is true that the encapsulation mechanism like classes and

objects hide information but these also provide visibility of some of their

information through well defined interfaces.

3) Object-oriented programming languages are characterised by four essential

properties: identity in terms of objects, classification in terms of classes,

polymorphism and inheritance. Any other programming language that uses
objects and in addition, supports at least one or more of these essential

characteristics (may also support features other than these four, in addition) is

called as an object-based programming language.

1.11 FURTHER READINGS

1) Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W., Object-

Oriented Modeling and Design, Prentice-Hall, 1991.

2) Bolshakova E., Programming Paradigms in Computer Science Education,

International Journal: Information Theory & Applications, 12(3), 2005.

3) http://en.wikipedia.org/wiki/Object-oriented_programming_language

4) http://en.wikipedia.org/wiki/Object-based_language

5) http://140.134.26.20/wbem/eng/ch3.html

6) http://www.desy.de/gna/html/cc/Tutorial/node2.html#SECTION00200000000000

000000

7) The C++ Programming Language by Bjarne Stroustrup, Addison-Wesley, 3
rd

edition, 1997.

8) C++ Programming Today by Johbston Barbara Johnston 2
nd

 Edition, PHI

9) C++: The Complete Reference, Herbert Schildt, 4
th
 Edition, Mc Graw Hill.

