

5

Inheritance

UNIT 1 INHERITANCE

Structure Page No.

1.0 Introduction 5

1.1 Objectives 5
1.2 Concept of Re-usability 6

1.3 Inheritance 6
1.3.1 Derived and Base Class 8

1.3.2 Declaration of Derived Class 9

1.3.3 Visibility of Class Members 9

1.4 Types of Inheritance 12

1.5 Single Inheritance 12

1.6 Multiple Inheritance 15

1.7 Multi-level Inheritance 17
1.8 Constructors and Destructors in Derived Classes 21

1.9 Summary 26

1.10 Answers to Check Your Progress 27
1.11 Further Readings 34

1.0 INTRODUCTION

There is a great surge of interest today in Object Oriented Programming (OOP) due to

obvious reasons. One of the most fundamental concepts of the object-oriented

paradigm is inheritance that has profound consequences on the development process.
In OOP, it is possible to define a class as inheriting from another. Object Oriented

Software Development involves a large number of classes. Many of the classes

extension of others. Object Oriented Programming has been widely acclaimed as a
technology that will support the creation of re-usable software, particularly because of

the inheritance facility. In OOP, inheritance is a re-usability technique. We can show

similarities between classes by means of inheritance and describe their similarities in a

class which other classes can inherit. Thus, we can re-use common descriptions.
Therefore, inheritance is often promoted as a core idea for reuse in the software

industry. The abilities of inheritance, if properly used, is a very useful mechanism in

many contexts including reuse. This unit starts with a discussion on the re-usability
concept. This is followed by the inheritance which is prime feature of object oriented

paradigm. It focuses on the standard form of inheritance by extension of a base class

with a derived class. Moreover, in this unit, different types of inheritance, the time of
its use and methods of its implementation are also discussed. Base classes, derived

classes, visibility of class members, and constructors and destructors in derived

classes are introduced. Illustrative examples that facilitate understanding of the

concept are presented.

1.1 OBJECTIVES

After going through this unit, you will be able to:

 define and understand why we need to study inheritance;

 define and understand the concept of reusability;

 describe an inheritance relationship;

 identify the cases where inheritance is suitable;

 define base classes and derived classes;

 implement different types of inheritance in C ++;

6

Inheritance and

Polymorphism in C + +
 explain the different types of inheritance;

 understand the need of virtual base class, and

 understand and implement the constructors in derived classes.

1.2 CONCEPT OF RE-USABILITY

Software re-usability is primary attribute of software quality. C++ strongly supports
the concept of reusability. C++ features such as classes, virtual functions, and

templates allow designs to be expressed so that re-use is made easier (and thus more

likely), but in themselves such features do not ensure re-usability. Do we really need
re-use? This question can best be answered by an analogy from automobile industry.

Consider the design and creation of a new car model. The automotive engineer does

not design a new car from scratch. Rather, the engineer borrows from the design of
existing cars. For example, the engine design from an existing car may be used in a

new model. If the engine design has been used in a previous model, design problems

have likely been resolved. Thus, development costs are reduced because a new engine

does not need to be designed and tested. Finally, consumer maintenance costs are
reduced because machines and others who must maintain the car are already familiar

with the operation of the engine.

The American Heritage Dictionary defines quality as “a characteristic or attribute of

something”. Re-usability is the degree to which a thing can be reused. Software re-

usability represents the ability to use part or the whole system in other systems which

are related to the packaging and scope of the functions that programs perform.
Can you tell why do we need to study re-usability? Well, the need for re-usability

comes from the observation that software systems often follow similar patterns; it

should be possible to exploit this commonality and avoid reinventing solutions to
problems that have been encountered before. Do you know what the advantage of re-

usability is? There are many advantages of re-usability. They can be applied to reduce

cost, effort and time of software development. It also increases the productivity,
portability and reliability of the software product.

Now, can you tell how the re-use is achieved in program? Re-use in OOP language

can be achieved by two ways basically: The first is through class definition-every time
a new object of class is defined, we reuse all the code and declarations of that class.

This type of re-use can be supported in the function-oriented approach also. The other

type of re-use, which is particular to OOP language, can be supported by inheritance.
Inheritance provides the idea of reusability. This means that we can add additional

features to an existing class without modifying it. This is possibly by deriving a new

class from the existing one. You have already seen the first type of reusability through
class. In the next section, we shall see, how will we achieve the reusability through

inheritance?

1.3 INHERITANCE

Inheritance is a prime feature of object oriented programming language. It is process
by which new classes called derived classes(sub classes, extended classes, or child

classes) are created from existing classes called base classes(super classes, or parent

classes). The derived class inherits all the features (capabilities) of the base class and
can add new features specific to the newly created derived class. The base class

remains unchanged.

We can say that

re-usability is
concerned as to how

we can use a system

or its part in other
systems.

7

Inheritance Inheritance is a technique of organizing information in a hierarchical form. It is a
relation between classes that allows for definition and implementation of one class

based on the definition of existing classes.

You can look around and find many real world examples of inheritance like

Inheritance between parent and child, employee and manager, person and student,

vehicle and light motor vehicle, and animal and mammal etc. Why are we interested

in inheritance and how will we use this concept? Well, Let us take the example to
understand this concept. Suppose we want to use the classes Employee and Manager

in the C++ program. For the time being, let us assume that we do not know the

concept of the inheritance. Now, we define the Employee and Manager classes as
follows:

If you look at the above declarations of the classes Employee and Manager, you can
make the observation that there are some common attributes and behavior in

Employee and Manager class. We have shown the common attributes and behavior in

Manager class again. Now, we introduce the concept of the inheritance. As we know

that generally Managers are treated differently from other employees in the
organization. Their salary raises are computed differently, they have access to a

secretary, they have a group of employee under them and so on. There are some

class Employee
{

public:

int id_number;

char Name_of_Employee[25];
int age;

char Department_Name[25];

int salary;
char Address[25];

// Member functions

void display_name(void);

void display_id(void);
void raise_salary(float percent);

.

.

.

};

class Manager
{

public:

int id_number;

char Name_of_Employee[25];
int age;

char Department_Name[25];

int salary;
char Address[25];

char Name_of_secretary[25];

Employee *team_members;
void display_name(void);

void display_id(void);

void display_secretary_name(void);

void raise_salary(float percent);
.

.

.
};

Inheritance is often

referred to as an “is-

a” relationship

because every object
of the class being

defined “is” carries

an object of the
inherited class also.

8

Inheritance and

Polymorphism in C + +
common data members as well as member functions like name, age, salary, address,
display_name(),display_id() etc . This is a kind of situation in which we use the

concept of inheritance. Why? Well, we can retain some of what we have already laid

down and defined in the Employee class in terms of data members and member

functions. Employee and Manager classes are declared as follows:

You can look at the above declaration and observe that we did not declare the

common attributes and functions again in the Manager class. Thus, we have reused
the previous declarations of data members and functions. We can also observe that we

have redefined raise_salary function in the Manager class due to different way to

compute salary of the Manager. From the above discussion, we can conclude that

what is meant by the application of inheritance and how it is supporting the concept of
re-usability by adding additional feature to an existing classes without modifying it.

1.3.1 Derived and Base Class

As we know, when Class A inherits the feature from class B, then Class A is called

the derived class and B is called Base class. A derived class extends its features by

inheriting the properties (features) from another class called the base class while

adding features of its own. In next section, we will see as to how we will define a
derived class.

class Employee

{

public:

int id_number;
char Name_of_Employee[25];

int age;

char Department_Name[25];
int salary;

char Address[25];

// Member functions
void display_name(void);

void display_id(void);

void raise_salary(float percent);

.

.

.

};
class Manager :: public Employee

{

public:

char name_of_secretary[25];
Employee *team_members;

void display_secretary_name(void);

void raise_salary(float percent);
.

.

.
};

9

Inheritance 1.3.2 Declaration of Derived Class

The declaration of a derived class shows its relationship with the base class in addition

to its own details. The common syntax of declaring a derived class is given as follows:

The derivation of DerivedClassName from the BaseClassName is indicated by colon
(:). The VisibilityMode enclosed within the square bracket is optional. If the

VisibilityMode is specified, it must be either public or private or protected. It specifies
the features of the base class that are privately derived or publicly derived. There are

four possible ways of derivation of derived class which is given below:

1.3.3 Visibility of Class Members

There are three visibility modes (visibility modifier). They are private, public and

protected. We have already learnt about private and public visibility mode in Unit 3 of

Block 1 of this course. Could you tell what the role of these terms in the programs
exists? They are actually controllers, used to control the access to members (data

members and functions members) of a class.

Why is the different type of visibility mode needed in derivation of a derived class?
Well, a class may contain some secret information which we are not interested to

share by the derived classes and non-secret information which we are interested to

share by the derived class. In nutshell, we can say that visibility mode promotes

encapsulation. The visibility of the base class members undergoes modification in a
derived class as summarized in Table 1.1.

Table 1.1: Visibility Mode

Base class

Visibility

Derived class Visibility

Private derivation Public derivation Protected derivation

private

public

protected

Not inherited private

private

Not inherited

public

protected

Not inherited

protected

protected

class DerivedClassName : public BaseClassName //public derivation

{

//members of derived class

};
class DerivedClassName : private BaseClassName //private

derivation

{
//members of derived class

};

class DerivedClassName : protected BaseClassName //protected
derivation

{

//members of derived class

};
class DerivedClassName : BaseClassName //private

derivation

{
//members of derived class

 };

class DerivedClassName : [VisibilityMode] BaseClassName

{

// members of derived class

};

10

Inheritance and

Polymorphism in C + +
From the Table 1.1, you can observe that in derived class declaration, if the visibility
mode is private then both „public members‟ of the base class as well as „protected

members‟ of the base class will become private members of the derived class.

Therefore, both public and protected member of base class can only be accessed by

the member functions of the derived class. They can not be accessed by the objects of
the derived class. And private members of the base class will not be inherited. On the

other hand, if visibility mode is public, public members of the base class will become

public members of the derived class and protected members of the base class will
become protected members of the derived class whereas private member of the base

class will never become the members of the declared class i.e. it will not be inherited.

If the visibility mode is protected then the public and protected members of the base
class will become the protected members of the derived class. In this case also, the

private members of the base class will not become the member of its derived class.

As we have demonstrated that the private members of base class will remain private to

the base class whether the base class is inherited publicly or privately or protected by
any means. They add to the items of the derived class and they are not directly

accessible to the member of a derived class. Derived class can access them through

the base class member functions. Consider the following declarations of a base class
A and a derived classes B, C, and D to illustrate private and public inheritance.

class A

{

private:
int privateA; // private member of base class A

protected:

int protectedA; // protected member of base class A
public:

int publicA; // public member of base class A

int getPrivateA() //public function of base class A

{
return privateA;

}

};

class B: private A // privately derived class

{
private:

int privateB;

protected:

int protectedB;
public:

int publicB;

void fun1()
{

int b;

b=privateA; //Won‟t work: privateA is not accessible

b=getPrivateA(); //OK: inherited member access private data
b=protectedA; // OK

b=publicA; // OK

}
};

11

Inheritance

The above first statement is illegal but second and third statements are valid. It is so
because in the first statement protected member protectedA of the base class A has

protected visibility status in class C. However in the second and third statements both

publicA and getPrivateA() have their public visibility status in class C, so they are
accessible.

 Check Your Progress 1

1) What are the benefits of inheritance? Explain in brief.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) When do we need inheritance?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

class C: public A // publically derived class

{
private:

int privateC;

protected:

int protectedC;
public:

int publicC;

void fun2()
{

int c;

c=privateA; //Won‟t work :privateA is not accessible
c=getPrivateA(); //OK: inherited member access private data

c=protectedA; // OK

c=publicA; // OK

}
};

Consider the following statements:
B objb; // objb is a object of class B

C objc; // objc is a object of class C

int x; // temporary variable x

The above statements define the object objb, objc and the integer variable x. Let
us consider the statements as follows:

x=objb.protectedA; //Won‟t work : protectedA is not accessible

x=objb.publicA; //Won‟t work : publicA is not accessible
x=objb.getPrivateA(); // Won‟t work: getPrivateA() is not accessible

The above all statements are illegal. Because protectedA, publicA and

getPrivateA() each have private accessibility status in the derived class B.
However, fun1() of derived class B accesses getPrivateA(), protectedA and

publicA. Let us again consider the statements as follows:

x=objc.protectedA; //Won‟t work : protectedA is not accessible

x=objc.publicA; //Valid
x=objc.getPrivateA(); // Valid

12

Inheritance and

Polymorphism in C + +
3) Why do we need to study access specifiers?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

4) What are the advantages of re-usability?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

5) Why do we need re-use? Give an analogy to explain your answer.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.4 TYPES OF INHERITANCE

In previous section, we discussed inheritance. In this section, we will discuss the types

of inheritance. As we know, the derived class inherits some or all of the features from

the base class depending on the visibility mode. A derived class can also inherit
properties from more than one class or from more than one level. We can classify

inheritance into the following type accordingly:

 Single Inheritance: Derivation of a class from only one base class is called a

single inheritance.

 Multiple Inheritance: Derivation of a class from several (two or more) base

classes is called multiple inheritance.

 Multi-level Inheritance: Derivation of a class from another derived class is

called multilevel inheritance.

 Hierarchical Inheritance: Derivation of several classes from a single base

class is called hierarchical inheritance.

 Hybird Inheritance: Derivation of a class involving more than one form of

inheritance is called hybrid inheritance.

 Multi-path Inheritance: Derivation of a class from other derived classes,

which are derived from the same base class is called multi-path inheritance.

In next sections, we shall discuss in detail single inheritance, multiple inheritance and
multi-level inheritance.

1.5 SINGLE INHERITANCE

Now, let us discuss about single inheritance. In Single Inheritance, derived class

inherits the feature of one base class. If a class is derived from one base class, it is
called Single Inheritance.

13

Inheritance Figure 1.1 depicts single inheritance:

Figure 1.1: Single Inheritance

Class A is the base class and class B is the derived class. The following are the

common steps to implement an inheritance. First, declare a base class and second

declare a derived class. The syntax of single inheritance of the above figure is given as
follows:

Let us understand the concept of single inheritance with Example1. In the example 1

given below, it is seen that how a single inheritance is implemented:

Example 1: Single Inheritance

Class

A

Class

B

class A

{
// members of class A

};

class B :[public/private/protected] A
{

// members of class B

};

#include <iostream.h>

class A

{
int a;

public :

int b;

void input_ab(void);
void output_a(void);

int get_a(void);

};
class B : public A

{

int c,d;

public :
void input_c(void);

void display(void);

void sum(void);
};

void A :: input_ab()

{
cout<< “\n Enter the value of a and b :”<<endl;

cin>>a>>b;

}

void A :: output_a()
{

cout<<”\\n The Value of a is :”<<a<<endl;

}

A derived class

can be declared if
its base class is

already declared.

14

Inheritance and

Polymorphism in C + +

The output of the example1 is given below.

Enter the value of a and b:

10

20
Enter the value of c:

30

The value of a is : 10
The value of b is : 20

The value of c is : 30

The value of d(sum of a, b and c) is : 60

The value of a is : 10
The value of b is : 0

The value of c is : 30

The value of d(sum of a, b and c) is : 40

int A :: get_a()

{

return a;
}

void B :: input_c()

{

cout<< “\n Enter the value of c :”<< endl;
cin>>c;

}

void B :: sum()
{

d=get_a()+b+c;

}
void B :: display()

{

cout<< “\n The value of b is :”<<b<< endl;

cout<< “\n The value of c is :”<<c<< endl;
cout<< “\n The value of d(sum of a,b and c) is :”<<d<< endl;

}

void main()
{

B objb;

objb.input_ab(); //base class member function

objb.input_c(); //derived class member function

objb.output_a(); //base class member function

objb.sum(); //derived class member function
objb.display(); //derived class member function

objb.b=0; //objb.a would not work

objb.sum(); //derived class member function
objb.display(); //derived class member function

}

15

Inheritance The above example shows a base class A and a derived class B. The base class A
contains one private data member a, one public data member b, and three public

member functions input_ab(), output_a() and get_a(). The class B contains two private

data c and d and three public functions input_c(), display() and sum(). The class B is a
derived publicly by class A. Therefore, B inherits all the public members (data and

functions) of class A and retains their visibility. Hence, the public members of class A

is also a public members of class B. But the private members of class A cannot be

inherited by class B. Thus, the derived class B will have more members than what it
contains at the time of declaration.

In the above example, we can see that the member functions sum() and display() are
not able to access the private data member of class A because it cannot be inherited.

However, the data member functions sum() and display() of derived class are able to

access the private data of class A through an inherited member function get_a() of
class A. In the main part of the program, we can also observe that the object of B can

directly access the data member b of class A, because data member b is publically

defined in A.

1.6 MULTIPLE INHERITANCE

Now, let us discuss the multiple inheritance. In multiple inheritance, derived class

inherits features from more than one parent classes (base classes). In other way we can

say that if a class is derived from more than one parent class (base classes), then it is
called multiple inheritance. Figure 2.2 depicts multiple inheritance.

Figure 2.2: Multiple Inheritance

The syntax of declaration of Multiple Inheritance is given below:

class

A
class B

class C

class A

{
// members of class A

};

class B

{

// members of class B

};

class C :[public/private/protected] A, [public/private/protected] B

{
// members of class C

};

16

Inheritance and

Polymorphism in C + +
In the example 2 given below, it is seen that how multiple inheritance is
implemented?

Example 2: Multiple Inheritance

#include <iostream.h>

class A

{
int a;

public :

void input_a(void);
void output_a(void);

int get_a(void);

};
class B

{

int b;

public :
void input_b(void);

void output_b(void);

int get_b(void);
};

class C : public A, public B

{
int c,d;

public :

void input_c(void);

void display(void);
void sum(void);

};

void A :: input_a()
{

cout<< “\n Enter the value of a :”<< endl;

cin>>a;

}
void A :: output_a()

{

cout<< “\n The value of a is :”<<a <<endl;
}

int A :: get_a()

{
return a;

}

void B :: input_b()

{
cout<< “\n Enter the value of b :”<< endl;

cin>>b;

}
void B :: output_b()

{

cout<< “\n The value of b is :”<<b<<endl;

}
int B :: get_b()

{

return b;
}

void C :: input_c()

17

Inheritance

The output of the example 2 is given below.

Enter the value of a:

10

Enter the value of b:

20
Enter the value of c:

30

The value of a is : 10
The value of b is : 20

The value of c is : 30

The value of d(sum of a, b and c) is : 60

The above example shows multiple inheritance. It contains three classes A, B and C.

The class A and class B are parent classes (base classes) and class C is derived class.

This class inherits the feature of class A and class B.

1.7 MULTI-LEVEL INHERITANCE

Now, let us discuss the Multi-level inheritance. In multi-level inheritance, the class
inherits the feature of another derived class. If a class C is derived from class B which

in turn is derived from class A and so on. It is called multi-level inheritance. Figure

1.3 depicts the multi-level inheritance.

{

cout<< “\n Enter the value of c :”<< endl;

cin>>c;
}

void C :: sum()

{
d=get_a()+get_b()+c;

}

void C ::display()
{

cout<< “\n The value of c is :”<<c<<endl;

cout<< “\n The value of d (sum of a, b and c) is :”<<d<<endl;

}
void main()

{

C objc;

objc.input_a(); //base class member function

objc.input_b(); //base class member function
objc.input_c(); //derived class member function

objc.output_a(); //base class member function

objc.output_b(); //base class member function

objc.sum(); //derived class member function
objc.display(); //derived class member function

}

18

Inheritance and

Polymorphism in C + +

 Base Class

Intermediate Derived Class

 Derived Class

Figure 1.3: Multi-level Inheritance

The syntax of the multi-level inheritance of the above figure is given as follows:

In example 3 given below, it is shown that how multilevel inheritance is implemented.

Example 3: Multi-level Inheritance

Class

A

Class

B

Class

C

class A
{

// members of class A

};

class B : [public/private/protected] A

{

// members of class B
};

class C :[public/private/protected] B

{
// members of class C

};

#include <iostream.h>

class A

{
int a;

public :

void input_a(void);

void output_a(void);
int get_a(void);

};

class B : public A
{

int b;

public :
void input_b(void);

void output_b(void);

int get_b(void);

};
class C : public B

{

int c,d;
public :

19

Inheritance

void input_c(void);

void display(void);

void sum(void);
};

void A :: input_a()

{
cout<< “\n Enter the value of a :”<< endl;

cin>>a;

}
void A :: output_a()

{

cout<< “\n The value of a is :”<<a<<endl;

}
int A :: get_a()

{

return a;
}

void B :: input_b()

{
cout<< “\n Enter the value of b :”<< endl;

cin>>b;

}

void B :: output_b()
{

cout<< “\n The Value of b is :”<<b<<endl;

}
int B :: get_b()

{

return b;

}
void C :: input_c()

{

cout<< “\n Enter the value of c :”<< endl;
cin>>c;

}

void C:: sum()
{

d=get_a()+get_b()+c;

}

void C ::display()
{

cout<< “\n The value of c is :”<<c<<endl;

cout<< “\n The value of d (sum of a, b and c) is :”<<d<<endl;
}

void main()

{

C objc;
objc.input_a(); // member function of class A

objc.input_b(); // member function of class B

objc.input_c(); // member function of class C
objc.output_a(); // member function of class A

objc.output_b(); // member function of class B

objc.sum(); // member function of class C
objc.display(); // member function of class C

}

20

Inheritance and

Polymorphism in C + +
The output of the example3 is given below.

Enter the value of a:

10

Enter the value of b:
20

Enter the value of c:

30
The value of a is : 10

The value of b is : 20

The value of c is : 30
The value of d(sum of a, b and c) is : 60

The above example shows multi-level inheritance. It contains three classes A, B, and

C. The class A is the base class. The class B is derived class. It inherits the features of
A. The class C is derived from intermediate derived class B. The class C, after

inheritance from A through B, would contain the following members:

 Check Your Progress 2

1) What are the different forms of inheritance supported by C++?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) Write a interactive program in c++ which reads the two integer number a and b

then performs the following operation:

(i) a+b

(ii) a-b
(iii) a*b

(iv) a/b

Design the function a+b and a-b in a base class and design a*b and a/b in a derived

class.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

private :

int c,d; //own member
public :

void input_a(void); // inherited from A via B

void output_a(void); // inherited from A via B
int get_a(void); // inherited from A via B

void input_b(void); // inherited from B

void output_b(void); // inherited from B
int get_b(void); // inherited from B

void input_c(void); // own

void display(void); //own
void sum(void); //own

21

Inheritance 3) What is multi-level inheritance?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

4) What are the ways to inherit properties of one class into another class?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

5) What is containership? How does it differ from inheritance?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.8 CONSTRUCTORS AND DESTRUCTORS IN

DERIVED CLASSES

You have already learnt about the constructors and destructors in Unit 4 of Block 1 of

this course. As we know, constructors and destructors play an important role in object

initialization and remove the resources allocated to the object. Now, we will discuss
as to how the constructors and destructors are used in derived classes.

Constructors in Derived Classes:

Can you tell when and why we need a constructor in derived class? Well, the derived

class need not have a constructor as long as base class has a no-argument constructor.

However, if any base class contains a constructor with arguments (one or more), it is
necessary for the derived class to have a constructor and pass the arguments to the

base class constructors. In inheritance, generally derived class objects are created

instead of the base class. Thus, it makes sense for the derived class to have a
constructor and pass arguments to the constructor of the base class. When an object of

a derived class is created, the constructor of the base class is executed first and later

on the constructor of the derived class. Let us consider example 4 given below in
which both base and derived class have constructor with parameter.

Example 4: Parametric constructors in Base and Derived classes

#include<iostream.h>

class A

{
private:

int a;

 protected:

 int b;
public:

A(int i, int j)

{
a=i;

b=j;

cout<< “A initialized”<<endl;

The constructors are
used to initialize

object‟s data members

and to allocate the

required resources
such as memory.

22

Inheritance and

Polymorphism in C + +

}

void display_ab(void)
{

cout<< “\nThe value of a is : ”<<a;

cout<< “\nThe value of b is : ”<<b;

}
int get_a(void)

{

return a;
}

};

class B
{

private:

int c;

protected:
int d;

public:

B(int i, int j)
{

c=i;

d=j;

cout<< “\nB initialized”<<endl;
}

void display_cd(void)

{
cout<< “\nThe value of c is : ”<<c;

cout<< “\nThe value of d is : ”<<d;

}
int get_c(void)

{

return c;

}
};

class C : public B, public A
{

int e,f, total;

public:

void C(int m, int n, int o, int p, int q, int r): A(m,n), B(o,p)

{

e=q;
f=r;

cout<< “ \nC initialized”;

}
void sum(void)

{

total=get_a()+b+get_c()+d+e+f;
}

void display(void)

{
cout<< “\nThe value of e is : ”<<e;

cout<< “\nThe value of f is : ”<<f;

cout<< “\nThe sum of a,b,c,d,e and f is : ”<<total;

23

Inheritance

The output of the programme given above is:

B initialized

A initialized

C initialized

The value of a is :10
The value of b is :20

The value of c is :30

The value of d is :40
The value of e is :50

The value of f is :60

The sum of a,b,c,d,e,f is :210

The above example shows the three classes A, B and C. The class A have one

parametric constructor, class B have also one parametric constructor and class C are
derived class and inherits the features of class A and class B. The class C also have a

parametric constructor. It is mandatory to have a parametric constructor in class C.

Here you can observe that the class b is initialized first, albeit it appears second in the
derived constructor because the class B has been declared first in the derived class

header before the class A. You can also see that sum() member function of derived

class C which is not able to use data members a and c of the base class A and B due to
private members of their respective classes. However, it is able to receive b and d due

to protected members of their respective classes. Table 1.2 depicts the order of

execution of constructors:

Table 1.2: Order of Execution of Constructors

Method of Inheritance Order of Execution

class B : public A

{};

A() : base constructor

B() : derived constructor

class C : public B, public A
{};

B() : base constructor
A() : base constructor

C() : derived constructor

class C : public B, virtual A
{};

A() : virtual base constructor
B() : base constructor

C() : derived constructor

class B : public A

{};
class C : public B{};

A() : super base constructor

B() : base constructor
C() : derived constructor

Destructors in Derived Classes:

Unlike constructor in class hierarchy, destructors are invoked in the reverse order of

the constructor invocation. Whenever object goes out of scope, the destructor of that

}
};

void main()

{

C objc(10,20,30,40,50,60);

objc.display_ab();

objc.display_cd();
objc.sum();

objc.display();

}

24

Inheritance and

Polymorphism in C + +
class, whose constructor was executed last while building object of that class, will be
executed first. Let us take example 5 given below which shows the order of calling

constructors and destructors in Inheritance:

Example 5: Order of calling of Constructors and Destructors in Inheritance

#include<iostream.h>

class A
{

protected:

int a,b;
public:

A(int i, int j)

{

a=i;
b=j;

cout<< “A initialized”<<endl;

}
~A()

{

cout<< “\Destructor in base class A”<<endl;
}

void display_ab()

{

cout<< “\nThe value of a is : ”<<a;
cout<< “\nThe value of b is : ”<<b;

}

};
class B

{

protected:

int c,d;
public:

B(int i, int j)

{
c=i;

d=j;

cout<< “\nB initialized”<<endl;
}

~B()

{

cout<< “\Destructor in base class B”<<endl;
}

void display_cd()

{
cout<< “\nThe value of c is : ”<<c;

cout<< “\nThe value of d is : ”<<d;

}
};

class C : public B, public A

{

Int e,f, total;

public:

C(int m, int n, int o, int p, int q, int r): A(m,n), B(o,p)
{

25

Inheritance

The output of the program given above is:

B initialized

A initialized
C initialized

The value of a is :10

The value of b is :20
The value of c is :30

The value of d is :40

The value of e is :50
The value of f is :60

The sum of a,b,c,d,e,f is :210

Destructor in derived class C

Destructor in base class A
Destructor in base class B

The above example shows the three classes A, B and C. The class A have one
parametric constructor, class B have also one parametric constructor and C is derived

class that inherits the feature of class A and class B. The class C also have a

parametric constructor. It is mandatory to have a parametric constructor in class C.
Here you can observe that the class B is initialized first, because the class B has been

declared first in the derived class header before the class A. You can also see that the

constructors are invoked in the order of B(), A() and C() whereas the destructors are

invoked in the order of C(), A() and B() which is in reverse order.

e=q;

f=r;
cout<< “ \nC initialized”;

}

~C()

{
cout<< “\Destructor in derived class C”<<endl;

}

void sum(void)
{

total=a+b+c+d+e+f;

}

void display(void)
{

cout<< “\nThe value of e is : ”<<e;

cout<< “\nThe value of f is : ”<<f;
cout<< “\nThe sum of a,b,c,d,e and f is : ”<<total<<endl;

}

};
void main()

{

C objc(10,20,30,40,50,60);

objc.display_ab();
objc.display_cd();

objc.sum();

objc.display();
}

26

Inheritance and

Polymorphism in C + +
Check Your Progress 3

1) Explain as to how ambiguity in member access is resolved.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) What are base and derived classes? Create a base class called Stack and a derived
class called MyStack. Write an interactive program to show the operations of

stack.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3) Discuss the cost of inheritance.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

4) Consider an example of declaring the examination result of BCA students of Indira
Gandhi National Open University. Design three classes: Student, Exam, and

Result. The Student class has data members such as those representing roll

number, name, etc. Create the class Exam by inheriting Student class. The Exam

class adds fields representing the marks scored in six subjects. Derive the Result
from the Exam class, and it has its own fields such as total-marks. Write an

interactive program to model this relationship.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.9 SUMMARY

Inheritance is one of the prime features of Object Oriented programming language

that helps to represent hierarchical relationship between classes. It is technique of

building new classes from the existing classes. It facilitates code re-use and
extensibility. It helps organize software components into categories and subcategories

resulting in classification of software. Classification is the widely accepted use of

inheritance of course other mechanisms may also be used for classification. Use of
inheritance helps to generate software systems more quickly and easily using reusable

components. The syntax of implementing inheritance through base and derived class

is discussed. The concept of reusability, constructors and destructors in derived class

are also discussed with examples. In this unit, we studied six different forms of
inheritance: simple inheritance, multiple inheritance, multilevel inheritance, hybrid

inheritance, hierarchical inheritance and multipath inheritance.

27

Inheritance

1.10 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress 1

1) There are many benefits that can be derived from the proper use of inheritance.

They are code reuse, ease of code maintenance and extension, and reduction in the

time to market. The following situations explain benefits of inheritance:

 When inherited from another class, the code that provides a behavior

required in the derived class does not need to be rewritten.

 Code sharing can occur at several levels.

 When multiple classes inherit from the same super class, there is a sufficient

guarantee that the behavior they inherit will be same in all cases.

2) Inheritance is suitable where the following situation arises:

 Whenever there are similarities between two or more classes, you can

apply inheritance.

 If a new class to be defined has certain features in addition to the features

of an existing class, you can use inheritance and code only the additional

features of this new class.

 If the relationship between the classes is Is_a, Is_a_Kind_Of, or Is_Link or

is Type_Of, you can select inheritance.

 The hierarchical relationship creates a relationship tree with specialized

type branching off from more generalized types. Inheritance is advisable

when generalization is fixed and does not require any modification or

change.

 The most common use of inheritance is for specialization.

3) Access specifiers are used to control the accessibility of data members and
member functions of class. It helps classes to prevent unwanted exposure of

members (data and functions) to outside world.

4) There are many advantages of re-usability. They can be applied to reduce cost,
effort and time of software development. It also increases the productivity,

portability and reliability of the software product.

5) Because of the high development costs, software should be reusable. If many

millions of dollars are to be spent to develop a software system, it makes sense to

make its component flexible so they can be re-used when developing a new
software system. Re-use can improve reliability, reduce development costs, and

improve maintainability. Let us take an analogy of Automobile industry to

understand the need of re-usability. Consider the design and creation of a new car

model. The automotive engineer does not design a new car from scratch. Rather,
the engineer borrows from the design of existing cars. For example, the engine

design from an existing car may be used in a new model. If the engine design has

been used in a previous model, design problems have likely been resolved. Thus
development costs are reduced because a new engine does not need to be designed

and tested. Finally, consumer maintenance costs are reduced because machines and

28

Inheritance and

Polymorphism in C + +
others who must maintain the car are already familiar with the operation of the
engine.

Check Your Progress 2

1) There are six forms of inheritance supported by c+ +, namely

(i) Single Inheritance
(ii) Multiple Inheritance

(iii) Multi-level Inheritance

(iv) Hybrid Inheritance
(v) Multi-path Inheritance

(vi) Hierarchical Inheritance

2)

#include <iostream.h>

#include<stdlib.h>

class A

{
int a,b;

public :

void input_ab(void);
int get_a(void);

int get_b(void);

int add(void);
int sub(void);

};

class B : public A

{
public :

int mul(void);

int div(void);
void display(int opt, int res);

};

void A :: input_ab()
{

cout<< “\n Enter the value of a and b :”<<endl;

cin>>a>>b;

}
int A :: get_a()

{

return a;
}

int A :: get_b()

{

return b;
}

int A :: Add()

{
return (a+b);

}

int A :: Sub()
{

return (a-b);

}

void B :: Mul()

{

29

Inheritance

return(get_a()*get_b());

}
void B :: Div()

{

return(get_a()/get_b());

}
void B :: display(int choice, int result)

{

cout<< “\n The value of a is :”<<a<< endl;
cout<< “\n The value of b is :”<<b<< “endl;

switch(choice)

{
case 1 : cout << “\n The sum of a and b is :” <<result<<endl;

 break;

case 2 : cout << “\n The subtraction of a and b is :” <<result<<endl;

 break;
case 3 : cout << “\n The multiplication of a and b is :” <<result<<endl;

 break;

case 4 : cout << “\n The division of a and b is :” <<result<<endl;
 break;

}

}

void main()
{

B objb;

int choice;
int result;

objb.input_ab();

while (1)
{

cout <<” Operations on two numbers …”<<endl;

cout <<” 1. Addition”<<endl;

cout <<” 2. Subtraction”<<endl;
cout <<” 3. Multiplication”<<endl;

cout <<” 4. Division”<<endl;

cout <<” 5. Quit”<<endl;
cout <<” Enter choice:”<<endl;

cin>>choice;

switch(choice)
{

case 1 : result=objb.add();

objb.display(choice,result);

 break;
case 2 : result=objb.sub();

objb.display(choice,result);

 break;
case 3 : result=objb.mul();

objb.display(choice,result);

 break;

case 4 : if (b!=0)
{

result=objb.div();

objb.display(choice,result);
}

else

cout<< “\nDivide by zero error:”<<endl;
 break;

30

Inheritance and

Polymorphism in C + +

3) Derivation of a class from another derived class is called multi-level inheritance.

The multi-level inheritance mechanism can be extended to any levels.

4) There are two ways to inherit properties of one class into another class as follows:

(i) Inheritance

(ii) Object Composition

5) The use of objects in a class as data members is referred to as object composition.

Thus, we can say that an object can be collection of many other objects. This

relationship is called has-a relationship or containership. This relationship is also
called nesting of objects. In many situations, inheritance and containership

relationships can serve the same purpose. Containership does not provide

flexibility of ownership. Inheritance relationship is simpler to implement and
offers a clearer conceptual framework.

Check Your Progress 3

1) Ambiguity is a problem that surfaces in certain situations involving multiple
inheritance. Consider the following cases:

 Base classes having functions with the same name.

 The class derived from these base classes is not having a function with the

name as those of its base classes.

 Members of a derived class or its objects referring to a member whose

name is the same as those of base classes.

These situations create ambiguity in deciding which of the base class‟s function

has to be referred. This problem is resolved by using the scope resolution operator

which is given as follows:

ObjectName.BaseClassName::MemberName(...).

2) Inheritance is a property by which one class inherits the feature of another class.

The class which inherits the feature from another class is called derived class and

class from which another class takes feature is called base class.

case 5 : exit(1);

 break;
default :

cout <<” Bad option selected”<<endl;

continue;

}
}

}

#include <iostream.h>
#include<stdlib.h>

#define Max_Size 5 //Maximum stack size

class Stack
{

protected :

int stack[Max_Size];

int top;
public :

Stack (void)

31

Inheritance

void push (int item);
void pop (int &item);

};

class MyStack : public Stack
{

public :

int push(int item);

int pop(int &item);
void stackContent(void);

};

Stack::Stack()
{

top=-1; //Stack empty

}
void Stack::push(int item)

{

top++;

stack[top]=item;
}

void Stack::pop(int &item)

{
item=stack[top];

top--;

}

int MyStack :: push(int item)
{

If (top<Max_Size-1)

{
Stack::push(item);

return 1; //push operation successful

}
cout<< “\n Stack Overflow :”<< endl;

return 0;

}

int MyStack :: pop(int &item)
{

If (top>=0)

{
Stack::pop(item);

return 1; //push operation successful

}
cout<< “\n Stack Underflow :”<< endl;

return 0;

}

void MyStack :: stackContent(void)
{

int stop;

stop=top;
for (int i=0; i<=stop;i++)

cout<< “:”<<stack[i];

}

void main()
{

MyStack stack;

int choice;
int item;

while (1)

32

Inheritance and

Polymorphism in C + +

3) Despite the advantages of inheritance, it incurs compiler overhead. In inheritance

relationship, there are certain members in the base class that are not at all used;

however, data space is allocated to them. This necessitates the need for specialized

inheritance which is complex to develop. The following are some of the perceived
costs of inheritance:

 Inherited methods, which must be prepared to deal with arbitrary subclasses, are

often slower than specialized codes.

 Message passing by its very nature is a more costly than the invocation of

simple procedures.

 Albeit object oriented programming is often touted as a solution to the problem

of software complexity, overuse or improper use of inheritance can simply

transfer one form of complexity to another form.

{

cout << “\nStack Operation …”<<endl;

cout << “\n1. Item to push?”<<endl;
cout << “2. Item to pop”<<endl;

cout << “3. Quit”<<endl;

cout << “Enter choice:”<<endl;

cin>>choice;
switch(choice)

{

case 1 :cout<< “Enter the item:”<<endl;
cin>>item;

cout<< “\n Stack content before push operation:”;

stack.stackContent();
if ((stack.push(item))==1)

{

cout<< “\n Stack content after push operation:”;

stack.stackContent();
}

 break;

case 2 : cout<< “\n Stack content before pop operation:”;
stack.stackContent();

if ((stack.pop(item))==1)

{
cout<< “\n Stack content after pop operation:”;

stack.stackContent();

cout<< “popped item:” <<item;

}
 break;

case 3 : exit(1);

 break;
default :

cout <<” Bad option selected”<<endl;

continue;

}
}

}

33

Inheritance 4)

#include<iostream.h>

#include<string.h>

class Student
{

int roll_no;

char name[25];
public:

void ReadStudentData(void);

void DisplayStudentData(void);

};
class Exam :public Student

{

protected:
int marks[6];

public :

void ReadExamMarks(void);
void DisplayExamMarks(void);

};

class Result : public Exam

{
int total_marks;

public :

void Display(void);
};

void Student :: ReadStudentData()

{
cout<<"\n Enetr the Name:"<<endl;

cin>>name;

cout<< "\n Enter the Roll No.:"<<endl;

cin>>roll_no;
}

void Student :: DisplayStudentData()

{
cout<<"\n Name :"<<name<<endl;

cout<<"\n Roll No. :"<<roll_no;

}

void Exam::ReadExamMarks()
{

cout <<"\nEnter Marks :"<<endl;

for (int i=0; i<6; i++)
{

cout<<"\n Marks scored in subject"<<i+1<<"<Max:100>"<<endl;

cin>>marks[i];
}

}

void Exam::DisplayExamMarks()

{
for (int i=0; i<6; i++)

cout<<"\n Marks scored in subject"<<i+1<<":"<<marks[i];

}
void Result::Display()

{

total_marks=0;
for (int i=0; i<6; i++)

total_marks=total_marks+marks[i];

cout<<"\n Total Marks scored in six subjects :"<<total_marks;

}

34

Inheritance and

Polymorphism in C + +

1.11 FURTHER READINGS

1) B. Stroustrup, The C++ Programming Language, Third Edition,

Pearson/Addison-wesley Publication, 1997.

2) K. R. Venu Gopal, Raj Kumar Buyya, T Ravishankar, Mastering C++, Tata-

McGraw-Hill Publishing Company Limited, New Delhi, 2004.

3) E. Balagurusamy, Object Oriented Programming with C++, Tata Mc-Graw-Hill

Publishing Company Limited, New Delhi, 2001.

4) N. Barkakati, Object Oriented Programming in C++, Prentice-Hall of India.

void main()

{
Result objr;

objr.ReadStudentData();

objr.ReadExamMarks();

objr.DisplayExamMarks();
objr.Display();

}

