

The Structu ed Query
Language

UNIT 1 THE STRUCTURED QUERY
LANGUAGE

Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 5
1.2 What is SQL? 6
1.3 Data Definition Language 7
1.4 Data Manipulation Language 9
1.5 Data Control 15
1.6 Database Objects: Views, Sequences, Indexes and Synonyms 16
 1.6.1 Views
 1.6.2 Sequences
 1.6.3 Indexes and Synonyms
1.7 Table Handling 19
1.8 Nested Queries 23
1.9 Summary 27
1.10 Solutions/Answer 28
1.11 Further Reading 34

1.0 INTRODUCTION

Database is an organised collection of information about an entity having controlled
redundancy and serves multiple applications. DBMS (database management system)
is an application software that is developed to create and manipulate the data in
database. A query language can easily access a data in a database. SQL (Structured
Query Language) is language used by most relational database systems. IBM
developed the SQL language in mid-1979. All communication with the clients and the
RDBMS, or between RDBMS is via SQL. Whether the client is a basic SQL engine or
a disguised engine such as a GUI, report writer or one RDBMS talking to another,
SQL statements pass from the client to the server. The server responds by processing
the SQL and returning the results. The advantage of this approach is that the only
network traffic is the initial query and the resulting response. The processing power of
the client is reserved for running the application.
SQL is a data sub-language consisting of three built-in languages: Data definition
language (DDL), Data manipulation language (DML) and Data control language
(DCL). It is a fourth generation language. SQL has many more features and
advantages. Let us discuss the SQL in more detail in this unit. It should be noted that
many commercial DBMS may or may not implement all the details given in this unit.
For example, MS-ACCESS does not support some of these features. Even some of the
constructs may not be portable, please consult the DBMS Help for any such
difference.

1.1 OBJECTIVES

After going through this unit, you should be able to:

• create, modify and delete database schema objects;
• update database using SQL command;
• retrieve data from the database through queries and sub-queries;
• handle join operations;
• control database access;
• deal with database objects like Tables, Views, Indexes, Sequences, and

Synonyms using SQL.
r

5

6

Structured Query
Language and
Transaction Management

1.2 WHAT IS SQL?

Structured Query Language (SQL) is a standard query language. It is commonly used
with all relational databases for data definition and manipulation.

All the relational systems support SQL, thus allowing migration of database from one
DBMS to another. In fact, this is one of the reasons of the major success of Relational
DBMS. A user may be able to write a program using SQL for an application that
involves data being stored in more than one DBMSs, provided these DBMS support
standard SQL. This feature is commonly referred to as portability. However, not all
the features of SQL implemented in one RDBMS are available in others because of
customization of SQL. However, please note there is just ONE standard SQL.

SQL provides an interface where the user can specify “What” are the expected results.
The query execution plan and optimisation is performed by the DBMS. The query
plan and optimisation determines how a query needs to be executed. For example, if
three tables X, Y and Z are to be joined together then which plan (X JOIN Y) and then
Z or X JOIN (Y JOIN Z) may be executed. All these decisions are based on statistics
of the relations and are beyond the scope of this unit.

SQL is called a non-procedural language as it just specifies what is to be dome rather
than how it is to be done. Also, since SQL is a higher-level query language, it is closer
to a language like English. Therefore, it is very user friendly.

The American National Standard Institute (ANSI) has designed standard versions of
SQL. The first standard in this series was created in 1986. It was called SQL-86 or
SQL1. This standard was revised and enhanced later and SQL-92 or SQL-2 was
released. A newer standard of SQL is SQL3 which is also called SQL- 99. In this unit
we will try to cover features from latest standards. However, some features may be
found to be very specific to certain DBMSs.

Some of the important features of SQL are:

• It is a non procedural language.
• It is an English-like language.
• It can process a single record as well as sets of records at a time.
• It is different from a third generation language (C& COBOL). All SQL

statements define what is to be done rather than how it is to be done.
• SQL is a data sub-language consisting of three built-in languages: Data

definition language (DDL), Data manipulation language (DML) and Data
control language (DCL).

• It insulates the user from the underlying structure and algorithm.
• SQL has facilities for defining database views, security, integrity constraints,

transaction controls, etc.

There are many variants of SQL, but the standard SQL is the same for any DBMS
environment. The following table shows the differences between SQL and one of its
superset SQL*Plus which is used in Oracle. This will give you an idea of how various
vendors have enhanced SQL to an environment. The non-standard features of SQL are
not portable across databases, therefore, should not be used preferably while writing
SQL queries.

Difference between SQL and SQL*Plus

SQL SQL*Plus
SQL is a language SQL *Plus is an environment
It is based on ANSI (American
National Standards Institute) standard

It is oracle proprietary interface for
executing SQL statements

7

The Structured Query
Language

SQL
It is entered into the SQL buffer on one
or more lines

It is entered one line at a time, not
stored in the SQL buffer

SQL cannot be abbreviated SQL*Plus can be abbreviated
It uses a termination character to
execute command immediately

It does not require termination
character. Commands are executed
immediately.

SQL statements manipulate data and
table definition in the database

It does not allow manipulation of
values in the database

1.3 DATA DEFINITION LANGUAGE

As discussed in the previous block, the basic storage unit of a relational database
management system is a table. It organises the data in the form of rows and columns.
But what does the data field column of table store? How do you define it using SQL?

The Data definition language (DDL) defines a set of commands used in the creation
and modification of schema objects such as tables, indexes, views etc. These
commands provide the ability to create, alter and drop these objects. These commands
are related to the management and administrations of the databases. Before and after
each DDL statement, the current transactions are implicitly committed, that is changes
made by these commands are permanently stored in the databases. Let us discuss
these commands in more detail:

CREATE TABLE Command

Syntax:
 CREATE TABLE <table name>(
 Column_name1 data type (column width) [constraints],
 Column_name2 data type (column width) [constraints],
 Column_name3 data type (column width) [constraints],
 ………………………………………..
);

Where table name assigns the name of the table, column name defines the name
of the field, data type specifies the data type for the field and column width
allocates specified size to the field.

Guidelines for creation of table:

• Table name should start with an alphabet.
• In table name, blank spaces and single quotes are not allowed.
• Reserve words of that DBMS cannot be used as table name.
• Proper data types and size should be specified.
• Unique column name should be specified.

Column Constraints: NOT NULL, UNIQUE, PRIMARY KEY, CHECK,
DEFAULT, REFERENCES,

On delete Cascade: Using this option whenever a parent row is deleted in a
referenced table then all the corresponding child rows are deleted from the referencing
table. This constraint is a form of referential integrity constraint.

Example 1:

CREATE TABLE product
(

pno number (4) PRIMARY KEY,
pname char (20) NOT NULL,
qoh number (5) DEFAULT (100),

8

Structured Query
Language and
Transaction Management

class char (1) NOT NULL,
rate number (8,2) NOT NULL,
CHECK ((class='A' AND rate<1000) OR
(class='B' AND rate>1000 AND rate<4500) OR
(class='C' AND rate>4500))

);

The command above creates a table. Primary key constraint ensures that product
number (pno) is not null and unique (both are the properties of primary key). Please
note the use of data type char (20). In many implementations of SQL on commercial
DBMS like SQL server and oracle, a data type called varchar and varchar2 is used
respectively. Varchar basically is variable length character type subject to a maximum
specified in the declarations. We will use them at most of the places later.

Please note the use of check constraints in the table created above. It correlates two
different attribute values.

Example 2:

 CREATE TABLE prodtrans
 (

 pno number (4)
 ptype char (1) CHECK (ptype in ('I','R','S')),
 qty number (5)
 FOREIGN KEY pno REFERENCES product (pno)
 ON DELETE CASCADE);

In the table so created please note the referential constraint on the foreign key pno in
prodtrans table to product table. Any product record if deleted from the product
table will trigger deletion of all the related records (ON DELETE CASCADE) in the
prodtrans table.

ALTER TABLE Command: This command is used for modification of existing
structure of the table in the following situation:

• When a new column is to be added to the table structure.
• When the existing column definition has to be changed, i.e., changing the width

of the data type or the data type itself.
• When integrity constraints have to be included or dropped.
• When a constraint has to be enabled or disabled.

Syntax
ALTER TABLE <table name> ADD (<column name> <data type>…);
ALTER TABLE <table name> MODIFY (<column name> <data type>…);
ALTER TABLE <table name> ADD CONSTRAINT <constraint name> < constraint
type>(field name);
ALTER TABLE <table name> DROP<constraint name>;
ALTER TABLE <table name> ENABLE/DISABLE <constraint name>;

You need to put many constraints such that the database integrity is not compromised.

Example 3:

ALTER TABLE emp MODIFY (empno NUMBER (7));

DROP TABLE Command:

When an existing object is not required for further use, it is always better to eliminate
it from the database. To delete the existing object from the database the following
command is used.
Syntax:

9

The Structured Query
Language

DROP TABLE<table name>;

Example 4:

DROP TABLE emp;

1.4 DATA MANIPULATION LANGUAGE

Data manipulation language (DML) defines a set of commands that are used to query
and modify data within existing schema objects. In this case commit is not implicit
that is changes are not permanent till explicitly committed. DML statements consist of
SELECT, INSERT, UPDATE and DELETE statements.

SELECT Statement

This statement is used for retrieving information from the databases. It can be coupled
with many clauses. Let us discuss these clauses in more detail:

1. Using Arithmetic operator

Example 5:

 SELECT ENAME, SAL, SAL+300
 FROM EMP;

2. Operator Precedence

 The basic operators used in SQL are * / + -

Operators of the same priority are evaluated From Left to right
Parentheses are used to force prioritized evaluation.

Example 6:

SELECT ENAME, SAL, 12*SAL+100
 FROM EMP;

 SELECT ENAME, SAL, 12*(SAL+100)
 FROM EMP;

3. Using Column aliases

Example 7:

To print column names as NAME and ANNUAL SALARY
SELECT ENAME “NAME”, SAL*12 “ANNUAL SALARY”

 FROM EMP;

4. Concatenation operator

Example 8:

Printing name and job as one string as column name employees:
SELECT ENAME||JOB “EMPLOYEES”

 FROM EMP;

5. Using Literal Character String

Example 9:

To print <name> IS A <job> as one string with column name employee
 SELECT ENAME || ‘ IS A ’ || JOB AS “EMPLOYEE”

FROM EMP;
6. To eliminate duplicate rows (distinct operator)

10

Structured Query
Language and
Transaction Management

Example 10:

SELECT DISTINCT DEPTNO
FROM EMP;

7. Special comparison operator used in where Clause

a. between. …and…It gives range between two values (inclusive)

Example 11:
 SELECT ENAME, SAL
 FROM EMP
 WHERE SAL BETWEEN 1000 AND 1500;

b. In (list): match any of a list of values

Example 12:

SELECT EMPNO, ENAME, SAL, MGR
FROM EMP
WHERE MGR IN (7902, 7566, 7788);
7902, 7566, and 7788 are Employee numbers

c. Like: match a character pattern

• Like operator is used only with char and Varchar2 to match a pattern
• % Denotes zero or many characters
• _ Denotes one character
• Combination of % and_can also be used

Example 13:

(I) List the names of employees whose name starts with ‘s’

SELECT ENAME FROM EMP

WHERE ENAME LIKE ‘S%’;

(II) List the ename ending with ‘s’

SELECT ENAME FROM EMP

WHERE ENAME LIKE ‘%S’;

(III) List ename having I as a second character

SELECT ENAME FROM EMP

WHERE ENAME LIKE ‘_I%’;

d. Is null operator

Example 14:

to find employee whose manage-id is not specified
SELECT ENAME, MGR FROM EMP
WHERE MGR IS NULL;

8 Logical Operators

Rules of Precedence:

Order evaluated

Operator

1 All comparison operators

11

The Structured Query
Language

2 NOT
3 AND
4 OR

Example 15: To print those records of salesman or president who are having

salary above 15000/-

Select ename, job, sal from emp
Where job = ‘SALESMAN’ or job = ‘PRESIDENT’

 And sal>15000;

The query formulation as above is incorrect for the problem statement. The correct
formulation would be:

SELECT ENAME, JOB, SAL FROM EMP
WHERE (JOB = ‘SALESMAN’ OR JOB = ‘PRESIDENT’)
AND SAL>15000;

9. Order by clause

• It is used in the last portion of select statement
• By using this rows can be sorted
• By default it takes ascending order
• DESC: is used for sorting in descending order
• Sorting by column which is not in select list is possible
• Sorting by column Alias

Example 16:

SELECT EMPNO, ENAME, SAL*12 “ANNUAL”
FROM EMP
ORDER BY ANNUAL;

Example 17: Sorting by multiple columns; ascending order on department number

and descending order of salary in each department.

SELECT ENAME, DEPTNO, SAL
FROM EMP
ORDER BY DEPTNO, SAL DESC;

10. Aggregate functions

• Some of these functions are count, min, max, avg.
• These functions help in getting consolidated information from a group of tuples.

Example 18: Find the total number of employees.

SELECT COUNT(*)
FROM EMP;

Example 19: Find the minimum, maximum and average salaries of employees of
department D1.

SELECT MIN(SAL), MAX(SAL), AVG(SAL)
FROM EMP
WHERE DEPTNO = ‘D1’ ;

11. Group By clauses

12

Structured Query
Language and
Transaction Management

• It is used to group database tuples on the basis of certain common attribute
value such as employees of a department.

• WHERE clause still can be used, if needed.

Example 20: Find department number and Number of Employees working in that
department.

SELECT DEPTNO, COUNT(EMPNO)
FROM EMP
GROUP BY DEPTNO;

Please note that while using group by and aggregate functions the only attributes that
can be put in select clause are the aggregated functions and the attributes that have
been used for grouping the information. For example, in the example 20, we cannot
put ENAME attribute in the SELECT clause as it will not have a distinct value for the
group. Please note the group here is created on DEPTNO.

12. Having clause

• This clause is used for creating conditions on grouped information.

Example 21: Find department number and maximum salary of those departments
where maximum salary is more than Rs 20000/-.

SELECT DEPTNO, MAX(SAL)
FROM EMP
GROUP BY DEPTNO
HAVING MAX(SAL) > 20000;

INSERT INTO command:

• Values can be inserted for all columns or for the selected columns
• Values can be given through sub query explained in section 1.8
• In place of values parameter substitution can also be used with insert.
• If data is not available for all the columns, then the column list must be included

following the table name.

Example 22: Insert the employee numbers, an increment amount of Rs.500/- and the
increment date-today (which is being entered through function SYSDATE) of all the
managers into a table INCR (increment due table) from the employee file.

INSERT INTO INCR
SELECT EMPNO, 500, SYSDATE FROM EMP
WHERE JOB = ‘MANAGER’;

Example 23: Insert values in a table using parameter substitution (& operator is used
for it 1, 2 are the field numbers).

INSERT INTO EMP
VALUES (&1,’&2’,’&3’, &4, &5, &6,NULL, &7);
Please note these values needs to be supplied at run time.

UPDATE Command:

Syntax is
UPDATE <table name>
SET <column name> = <value>
WHERE <condition>;

Sub query in the UPDATE command:

13

The Structured Query
Language

Example 24: Double the commission for employees, who have got at least 2
increments.

UPDATE EMP
SET COMM = COMM * 2
WHERE 2 <= (SELECT COUNT (*) FROM INCR
WHERE INCR.EMPNO = EMP.EMPNO
GROUP BY EMPNO);

Please note the use of subquery that counts the number of increments given to each
employee stored in the INCR table. Please note the comparison, instead of ……>=2,
we have written reverse of it as 2 <= …..

DELETE Command

In the following example, the deletion will be performed in EMP table.No deletion
will be performed in the INCR table.

Example 25: Delete the records of employees who have got no increment.

DELETE FROM EMP
 WHERE EMPNO NOT IN (SELECT EMPNO FROM INCR);

 Check Your Progress 1

1) What are the advantages of SQL? Can you think of some disadvantages of SQL?

…………………………………………………………………………………….

…………………………………………………………………………………….

…………………………………………………………………………………….

……………………………………………………………………………………..

2) Create the Room, Booking, and Guest tables using the integrity enhancement
features of SQL with the following constraints:

 (a) Type must be one of Single, Double, or Family.
 (b) Price must be between Rs.100/- and Rs.1000/-.
 (c) roomNo must be between 1 and 100.
 (d) booking dateFrom and dateTo must be greater than today’s date.
 (e) The same room cannot be double booked.
 (f) The same guest cannot have overlapping bookings.

…………………………………………………………………………………….

…………………………………………………………………………………….

…………………………………………………………………………………….

…………………………………………………………………………………….

…………………………………………………………………………………….

……………………………………………………………………………………..

3) Define the function of each of the clauses in the SELECT statement. What are the
restrictions imposed on these clauses?

……………………………………………………………………………………..

……………………………………………………………………………………..

…………………………………………………………………………………….

14

Structured Query
Language and
Transaction Management

…………………………………………………………………………………….

……………………………………………………………………………………..

4) Consider the supplier relations.
S

SNO
(Supplier Number)

SNAME
(Supplier Name)

STATUS CITY

S1 Prentice Hall 30 Calcutta
S2 McGraw Hill 30 Mumbai
S3 Wiley 20 Chennai
S4 Pearson 40 Delhi
S5 Galgotia 10 Delhi

SP

SNO PNO (Part Number) Quantity
S1 P1 300
S1 P2 200
S2 P1 100
S2 P2 400
S3 P2 200
S4 P2 200

a) Get supplier numbers for suppliers with status > 20 and city is Delhi
b) Get Supplier Numbers and status for suppliers in Delhi in descending order

of status.
c) Get all pairs of supplier numbers such that the two suppliers are located in

the same city. (Hint: It is retrieval involving join of a table with itself.)
d) Get unique supplier names for suppliers who supply part P2 without using

IN operator.
e) Give the same query above by using the operator IN.
f) Get part numbers supplied by more than one supplier. (Hint : It is retrieval

with sub-query block, with inter block reference and same table involved in
both blocks)

g) Get supplier numbers for suppliers who are located in the same city as
supplier S1. (Hint: Retrieval with sub query and unqualified comparison
operator).

h) Get supplier names for suppliers who supply part P1. (Hint : Retrieval using
EXISTS)

i) Get part numbers for parts whose quantity is greater than 200 or are
currently supplied by S2. (Hint: It is a retrieval using union).

j) Suppose for the supplier S5 the value for status is NULL instead of 10. Get
supplier numbers for suppliers greater than 25. (Hint: Retrieval using
NULL).

k) Get unique supplier numbers supplying parts. (Hint: This query is using the
built-in function count).

l) For each part supplied, get the part number and the total quantity supplied
for that part. (Hint: The query using GROUP BY).

m) Get part numbers for all parts supplied by more than one supplier. (Hint: It
is GROUP BY with HAVING).

n) For all those parts, for which the total quantity supplied is greater than 300,
get the part number and the maximum quantity of the part supplied in a
single supply. Order the result by descending part number within those
maximum quantity values.

o) Double the status of all suppliers in Delhi. (Hint: UPDATE Operation).
p) Let us consider the table TEMP has one column, called PNO. Enter into

TEMP part numbers for all parts supplied by S2.
q) Add part p7.
r) Delete all the suppliers in Mumbai and also the suppliers concerned.

15

The Structured Query
Language

……………………………………………………………………………………………

……………………………………………………………………………………………

1.5 DATA CONTROL

The data control basically refers to commands that allow system and data privileges to
be passed to various users. These commands are normally available to database
administrator. Let us look into some data control language commands:

Create a new user:

CREATE USER < user name > IDENTIFIED BY < Password>

Example 26:

CREATE USER MCA12 IDENTIFIED BY W123

Grant: It is used to provide database access permission to users. It is of two types (1)
system level permission (2) Object level permission.

Example 27:

 GRANT CREATE SESSION TO MCA12;
(This command provides system level permission on creating a

session – not portable)

GRANT SELECT ON EMP TO MCA12;

(Object level permission on table EMP)

GRANT SELECT, INSERT, UPDATE, DELETE ON EMP TO MCA12;

 GRANT SELECT, UPDATE ON EMP TO MCA12, MCA13;
(Two users)

GRANT ALL ON EMP TO PUBLIC;
 (All permission to all users, do not use it. It is very dangerous for

database)

Revoke: It is used to cancel the permission granted.

Example 28:

 REVOKE ALL ON EMP FROM MCA12;
(All permissions will be cancelled)

 You can also revoke only some of the permissions.

Drop: A user-id can be deleted by using drop command.

Example 29:

 DROP USER MCA12;

Accessing information about permissions to all users

(1) Object level permissions: With the help of data dictionary you can view the

permissions to user. Let us take the table name from oracle. In oracle the
name of the table containing these permissions is user_tab_privs.

 DESCRIBE USER_TAB_PRIVS ;
 SELECT * FROM USER_TAB_PRIVS;
(2) System level permissions: With the help of data dictionary you can see them.

Let us take the table name as user_sys_privs (used in oracle).
 DESCRIBE USER_SYS_PRIVS ;

16

Structured Query
Language and
Transaction Management

 SELECT * FROM USER_SYS_PRIVS ;

All these commands are very specific to a data base system and may be different on
different DBMS.

1.6 DATABASE OBJECTS: VIEWS, SEQUENCES,
INDEXES AND SYNONYMS

Some of the important concepts in a database system are the views and indexes.
Views are a mechanism that can support data independence and security. Indexes help
in better query responses. Let us discuss about them along with two more concepts
sequences and synonyms in more details.

1.6.1 Views

A view is like a window through which data from tables can be viewed or changed.
The table on which a view is based is called Base table. The view is stored as a
SELECT statement in the data dictionary. When the user wants to retrieve data, using
view. Then the following steps are followed.

1) View definition is retrieved from data dictionary table. For example, the view
 definitions in oracle are to be retrieved from table name USER-VIEWS.

2) Checks access privileges for the view base table.

3) Converts the view query into an equivalent operation on the underlying base
 table

Advantages:

• It restricts data access.

• It makes complex queries look easy.

• It allows data independence.

• It presents different views of the same data.

Type of views:

Simple views and Complex Views

Feature Simple Views Complex Views
Number of tables One One or more
Contain Functions No Yes
Contain groups of data No Yes
Data Manipulation IS allowed Not always

Let us look into some of the examples. To see all the details about existing views in
Oracle:

SELECT* FROM USER_VIEWS;

Creating a view:

• A query can be embedded within the CREATE VIEW STATEMENT

• A query can contain complex select statements including join, groups and sub-
queries

• A query that defines the view cannot contain an order by clause.

• DML operation (delete/modify/add) cannot be applied if the view contains any
of the following:

17

The Structured Query
Language

Delete (You can’t delete
if view contains
following)

Modify (you cannot
modify if view contains
following)

Insert (you cannot insert
if view contains
following)

• Group functions
• A group by clause
• A distinct keyword

• Group functions
• A group by clause
• A distinct keyword
• Columns defined by

Expressions

• Group functions
• A group by clause
• A distinct keyword
• Columns defined by

Expressions
• There are Not Null

Columns in the base
tables that are not
selected by view.

Example 30: Create a view named employee salary having minimum, maximum and
average salary for each department.

CREATE VIEW EMPSAL (NAME, MINSAL, MAXSAL, AVGSAL) AS
 SELECT D.DNAME, MIN(E.SAL),MAX(E.SAL),AVG(E.SAL)
 FROM EMP E, DEPT D
 WHERE E.DEPTNO=D.DEPTNO
 GROUP BY D.DNAME;

To see the result of the command above you can give the following command:

SELECT * FROM EMPSAL;
You may get some sample output like:
NAME MINSAL MAXSA AVGSAL
-------------- --------- --------- -------------
ACCOUNTING 1300 5000 2916.6667
RESEARCH 800 3000 2175
SALES 950 2850 1566.6667

To see the structure of the view so created, you can give the following
command:

DESCRIBE EMPSAL;
 Name Null? Type
--------------- ------------ ---------------------
 NAME VARCHAR2 (14)
 MINSAL NUMBER
 MAXSAL NUMBER
 AVGSAL NUMBER

Creating views with check option: This option restricts those updates of data values
that cause records to go off the view. The following example explains this in more
detail:

Example 31: To create a view for employees of Department = 30, such that user
cannot change the department number from the view:

CREATE OR REPLACE VIEW EMPD30 AS
SELECT EMPNO EMPL_NUM, ENAME NAME, SAL SALARY
FROM EMP
WHERE DEPTNO=30
WITH CHECK OPTION;

18

Structured Query
Language and
Transaction Management

Now the user cannot change the department number of any record of view EMPD30.
If this change is allowed then the record in which the change has been made will go
off the view as the view is only for department-30. This restricted because of use of
WITH CHECK OPTION clause

Creating views with Read only option: In the view definition this option is used to
ensure that no DML operations can be performed on the view.

Creating views with Replace option: This option is used to change the definition of
the view without dropping and recreating it or regranting object privileges previously
granted on it.

1.6.2 Sequences
Sequences:

• automatically generate unique numbers
• are sharable
• are typically used to create a primary key value
• replace application code
• speed up the efficiency of accessing sequence Values when cached in memory.

Example 32: Create a sequence named SEQSS that starts at 105, has a step of 1 and
can take maximum value as 2000.

CREATE SEQUENCE SEQSS
 START WITH 105
 INCREMENT BY 1
 MAX VALUE 2000;

How the sequence so created is used? The following sequence of commands try to
demonstrate the use of the sequence SEQSS.

Suppose a table person exists as:
 SELECT * FROM PERSON;
Output: CODE NAME ADDRESS

 ------ --------------- ---------------
 104 RAMESH MUMBAI
 Now, if we give the command:

INSERT INTO PERSON
 VALUES (SEQSS.NEXTVAL, &NAME, &ADDRESS)

On execution of statement above do the following input:
Enter value for name: 'Rakhi'
Enter value for address: 'New Delhi'

 Now, give the following command to see the output:
 SELECT * FROM PERSON;
 CODE NAME ADDRESS
--------- --------------- -----------------
 104 RAMESH MUMBAI
 105 Rakhi NEW DELHI

The descriptions of sequences such as minimum value, maximum value, step or
increment are stored in the data dictionary. For example, in oracle it is stored in the
table user_sequences. You can see the description of sequences by giving the
SELECT command.

Gaps in sequence values can occur when:

- A rollback occurs that is when a statement changes are not accepted.
- The system crashes
- A sequence is used in another table.

19

The Structured Query
Language

Modify a sequence:

ALTER SEQUENCE SEQSS
 INCREMENT 2
 MAXVALUE 3000;

Removing a sequence:

DROP SEQUENCE SEQSS;

1.6.3 Indexes and Synonyms

Some of the basic properties of indexes are:

• An Index is a schema Object
• Indexes can be created explicitly or automatically
• Indexes are used to speed up the retrieval of rows
• Indexes are logically and physically independent of the table. It means they can

be created or dropped at any time and have no effect on the base tables or other
indexes.

• However, when a table is dropped corresponding indexes are also dropped.

Creation of Indexes

Automatically: When a primary key or Unique constraint is defined in a table
definition then a unique index is created automatically.

Manually: User can create non-unique indexes on columns to speed up access time to
rows.

Example 33: The following commands create index on employee name and
employee name + department number respectively.

CREATE INDEX EMP_ENAME_IDX ON EMP (ENAME);
CREATE INDEX EMP_MULTI_IDX ON EMP (ENAME, DEPTNO);

Finding details about created indexes: The data dictionary contains the name of
index, table name and column names. For example, in Oracle a user-indexes and
user-ind-columns view contains the details about user created indexes.

Remove an index from the data dictionary:

 DROP INDEX EMP_ENAME_IDX;

Indexes cannot be modified.

Synonyms

It permits short names or alternative names for objects.

Example 34:
 CREATE SYNONYM D30
 FOR EMPD30;
Now if we give command:

 SELECT * FROM D30;
The output will be:
NAME MINSAL MAXSAL AVGSAL
--------------------- ------------ ------------- --------------
ACCOUNTING 1300 5000 2916.6667
RESEARCH 800 3000 2175
SALES 950 2850 1566.6667

Removing a Synonym:

DROP SYNONYM D30;

20

Structured Query
Language and
Transaction Management

1.7 TABLE HANDLING

In RDBMS more than one table can be handled at a time by using join operation. Join
operation is a relational operation that causes two tables with a common domain to be
combined into a single table or view. SQL specifies a join implicitly by referring the
matching of common columns over which tables are joined in a WHERE clause. Two
tables may be joined when each contains a column that shares a common domain with
the other. The result of join operation is a single table. Selected columns from all the
tables are included. Each row returned contains data from rows in the different input
tables where values for the common columns match. An important rule of table
handling is that there should be one condition within the WHERE clause for each pair
of tables being joined. Thus if two tables are to be combined, one condition would be
necessary, but if three tables (X, Y, Z) are to be combined then two conditions would
be necessary because there are two pairs of tables (X-Y and Y-Z) OR (X-Z and Y-Z),
and so forth. There are several possible types of joins in relational database queries.
Four types of join operations are described below:

(1) Equi Join: A join in which the joining condition is based on equality between

values in the common columns. Common columns appear (redundantly) in the
result table. Consider the following relations:

• customer (custid, custname, ………..) and
• order (custid, ordered,………………..)

Example 35: What are the names of all customers who have placed orders?

The required information is available in two tables, customer and order. The
SQL solution requires joining the two table using equi join.

SELECT CUSTOMER.CUTOID, ORDER.CUSTOID,
CUSTONAME, ORDERID

 FROM CUSTOMER, ORDER
WHERE CUSTOMER.CUSTOID=ORDER.CUSTOID;

 The output may be:
Customer.custoid order.custoid custoname orderid

 -------------------------- ------------------ ----------------------- ----------
10 10 Pooja Enterprises 1001
12 12 Estern Enterprises 1002
3 3 Impressions 1003

(2) Natural Join: It is the same like Equi join except one of the duplicate columns

is eliminated in the result table. The natural join is the most commonly used
form of join operation.

Example 36:

 SELECT CUSTOMER.CUTOID, CUSTONAME, ORDERID
FROM CUSTOMER, ORDER
WHERE CUSTOMER.CUSTOID=ORDER.CUSTOID;

 Output:
custoid custoname orderid
----------- --------------------- ----------

 10 Pooja Enterprises 1001
 12 Estern Enterprises 1002

 3 Impressions 1003

(3) Outer Join: The use of Outer Join is that it even joins those tuples that do not
have matching values in common columns are also included in the result table.
Outer join places null values in columns where there is not a match between

21

The Structured Query
Language

tables. A condition involving an outer join is that it cannot use the IN operator
or cannot be linked to another condition by the OR operator.

Example 37: The following is an example of left outer join (which only considers the
non-matching tuples of table on the left side of the join expression).

SELECT CUSTOMER.CUTOID, CUSTONAME, ORDERID
FROM CUSTOMER LEFT OUTER JOIN ORDER
WHERE CUSTOMER.CUSTOID = ORDER.CUSTOID;

Output: The following result assumes a CUSTID in CUSTOMER

table who have not issued any order so far.
 CUSTOID CUSTONAME ORDERID
 ------------------- ---------------------- ------------
 10 Pooja Enterprises 1001
 12 Estern Enterprises 1002

 3 Impressions 1003
 15 South Enterprises NULL

The other types of outer join are the Right outer join or complete outer join.

(4) Self-Join: It is a join operation where a table is joined with itself. Consider the

following sample partial data of EMP table:

EMPNO ENAME MGRID …..
1 Nirmal 4
2 Kailash 4
3 Veena 1
4 Boss NULL
….. ….. …

Example 38: Find the name of each employee’s manager name.

SELECT WORKER.ENAME || ‘WORK FOR’ || MANAGER.ENAME
FROM EMP WORKER, EMP MANAGER
WHERE WORKER.MGR=MANAGER.EMPNO;

Output:
Nirmal works for Boss
 Kailash works for Boss
Veena works for Nirmal

 Check Your Progress 2

1) Discuss how the Access Control mechanism of SQL works.

……………………………………………………………………………………..

……………………………………………………………………………………..

……………………………………………………………………………………..

……………………………………………………………………………………..

2) Consider Hotel schema consisting of three tables Hotel, Booking and Guest,
CREATE TABLE Hotel
 hotelNo HotelNumber NOT NULL,

 hotelName VARCHAR(20) NOT NULL,
 city VARCHAR(50) NOT NULL,

 PRIMARY KEY (hotelNo));

22

Structured Query
Language and
Transaction Management

 CREATE TABLE Booking(
 hotelNo HotelNumbers NOT NULL,
 guestNo GuestNumbers NOT NULL,
 dateFrom BookingDate NOT NULL,
 dateTo BookingDate NULL,
 roomNo RoomNumber NOT NULL,

 PRIMARY KEY (hotelNo, guestNo, dateFrom),
 FOREIGN KEY (hotelNo) REFERENCES Hotel
 ON DELETE CASCADE ON UPDATE CASCADE,
 FOREIGN KEY (guestNo) REFERENCES Guest
 ON DELETE NO ACTION ON UPDATE CASCADE,
 FOREIGN KEY (hotelNo, roomNo) REFERENCES Room
 ON DELETE NO ACTION ON UPDATE CASCADE);
 CREATE TABLE Guest(
 guestNo GuestNumber NOT NULL,
 guestName VARCHAR(20) NOT NULL,
 guestAddress VARCHAR(50) NOT NULL
 PRIMARY KEY (guestno));

 CREATE TABLE Room(
 roomNo RoomNumber NOT NULL,
 hotelNo HotelNumbers NOT NULL,
 type RoomType NOT NULL DEFAULT ‘S’
 price RoomPrice NOT NULL,
 PRIMARY KEY (roomNo, hotelNo),
 FOREIGN KEY (hotelNo) REFERENCES Hotel
 ON DELETE CASCADE ON UPDATE CASCADE);

Create a view containing the hotel name and the names of the guests staying at the hotel.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………….

3) Give the users Manager and Director full access to views HotelData and
BookingOutToday, with the privilege to pass the access on to other users.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

23

The Structured Query
Language 1.8 NESTED QUERIES

By now we have discussed the basic commands including data definition and data
manipulations. Now let us look into some more complex queries in this section.

Sub-queries

Some of the basic issues of sub-queries are:

• A sub-query is a SELECT statement that is embedded in a clause of another

SELECT statement. They are often referred to as a NESTED SELECT or SUB
SELECT or INNER SELECT.

• The sub-query (inner query) executes first before the main query. The result of the

sub-query is used by the main query (outer query).

• Sub-query can be placed in WHERE or HAVING or FROM clauses.

• Format of using sub-queries:
 SELECT<select_list>
 FROM<table>
 WHERE expr OPERATOR
 (SELECT <select_list>
 FROM <TABLE>WHERE);

Operator includes a comparison operator (single or multiple row operators)
Single row operators: >, =, >=, <, <=, <>

Multiple row operators: IN, ANY, ALL

• Order by clause cannot be used in sub-query, if specified it must be the last clause

in the main select statement.

• Types of sub-queries:

 Single row sub-query: It returns only one row from the inner select statement.
 Multiple row sub-queries: it returns more than one row from the inner select

statement
 Multiple column sub-queries: it returns more than one column from the inner

select statement.

Single row operators are used with single row sub queries and multiple row
operators are used with multiple row sub queries.

• The Outer and Inner queries can get data from different tables.

• Group Functions can be used in sub queries.

Consider the following partial relation EMP. Let us create some sub-queries for them

EMPNO ENAME JOB SAL DEPTNO
7566 Nirmal MANAGER 2975 10
7788 Kailash ANALYST 3000 10
7839 Karuna PRESIDENT 5000 20
7902 Ashwin ANALYST 3000 20
7905 Ashwini MANAGER 4000 20

Example 39: Get the details of the person having the minimum salary.

24

Structured Query
Language and
Transaction Management

SELECT ENAME, JOB, SAL
 FROM EMP
 WHERE SAL = (SELECT MIN (SAL)
 FROM EMP);
Output:

ENAME JOB SAL
Nirmal MANAGER 2975

Example 40: Display the employees whose job title is the same as that of employee
7566 and salary is more than the salary of employee 7788.

SELECT ENAME, JOB
FROM EMP

 WHERE JOB = (SELECT JOB
 FROM EMP
 WHERE EMPPNO = 7566)
 AND SAL > (SELECT SAL

FROM EMP
 WHERE EMPPNO=7788);

Output: Job title for the employee 7566 happens to be ‘MANAGER’)

ENAME JOB
Ashwini MANAGER

Having Clause with sub queries: First we recollect the GROUP BYclause. The
following query finds the minimum salary in each department.

SELECT DEPTNO, MIN(SAL)
FROM.EMP

 GROUP BY DEPTNO;
Output:

DEPTNO SAL
10 2975
20 3000

Example 41: To find the minimum salary in those departments whose minimum salary
is greater than minimum salary of department number 10.

SELECT DEPTNO, MIN(SAL)
FROM EMP

 GROUP BY DEPTNO
 HAVING MIN(SAL) > (SELECT MIN (SAL)
 FROM EMP
 WHERE DEPTNO = 10);
 Output:

DEPTNO SAL
20 3000

Example 42: Find the name, department number and salary of employees drawing
minimum salary in that department.

 SELECT ENAME, SAL, DEPTNO
 FROM EMP
 WHERE SAL IN (SELECT MIN (SAL)
 FROM EMP
 GROUP BY DEPTNO);
Output:

25

The Structured Query
Language

ENAME SAL DEPTNO
Nirmal 2975 10
Ashwin 3000 20

Find the salary of employees employed as an ANALYST
SELECT SAL FROM EMPWHERE JOB= ' ANALYST '

Output:

SAL
3000
3000

Example 43: Find the salary of employees who are not ‘ANALYST’ but get a salary
less than or equal to any person employed as ‘ANALYST’.

SELECT EMPNO, ENAME, JOB, SAL
 FROMEMP
 WHERE SAL <= ANY (SELECT SAL

 FROM EMP WHERE JOB = 'ANALYST')
 AND JOB<>'ANALYST' ;

Output:

EMPNO ENAME JOB SAL
7566 Nirmal MANAGER 2975

Find the average salary in each department

SELECT DEPTNO, AVG(SAL) FROM EMP GROUP BY DEPTNO;
Result:

DEPTNO SAL
10 2987.5
20 4000

Example 44: Find out the employee who draws a salary more than the average salary
of all the departments.

SELECT EMPNO, ENAME, JOB, SAL
FROM EMP
WHERE SAL> ALL (SELECT AVG (SAL)

FROM EMP
GROUP BY DEPTNO);

Output:

EMPNO ENAME JOB SAL
7839 Karuna PRESIDENT 5000

Example 45: Find the employee name, salary, department number and average salary
of his/her department, for those employees whose salary is more than the average
salary of that department.

 SELECT A.ENAME, A.SAL, A.DEPTNO, B.AVGSAL
 FROM EMP A, (SELECT DEPTNO, AVG (SAL) AVGSAL

 FROM EMP
 GROUP BY DEPTNO) B
 WHERE A.DEPTNO=B.DEPTNO AND A.SAL> B. AVGSAL;

26

Structured Query
Language and
Transaction Management

Output:

ENAME SAL DEPTNO AVGSAL
Kailash 3000 10 2987.5
Karuna 5000 20 4000

Multiple column Queries:
Syntax:

SELECT COLUMN1, COL2,……
FROM TABLE
WHERE (COLUMN1, COL2, …) IN

(SELECT COLUMN1, COL2,….
 FROM TABLE
 WHERE <CONDITION>);

Example 46: Find the department number, name, job title and salary of those people
who have the same job title and salary as those are in department 10.

SELECT DEPTNO,ENAME, JOB, SAL
FROM EMP

 WHERE (JOB, SAL) IN (SELECT JOB, SAL
FROM EMP
WHERE DEPTNO=10);

Output:

DEPTNO ENAME JOB SAL
10 Nirmal MANAGER 2975
10 Kailash ANALYST 3000
20 Ashwin ANALYST 3000

 Check Your Progress 3

1) What is the difference between a sub-query and a join? Under what circumstances
would you not be able to use a sub-query?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Use the Hotel schema defined in question number 2 (Check Your Progress 2)
and answer the following queries:

• List the names and addresses of all guests in Delhi, alphabetically ordered by

name.
• List the price and type of all rooms at the GRAND Hotel.
• List the rooms that are currently unoccupied at the Grosvenor Hotel.
• List the number of rooms in each hotel.
• What is the most commonly booked room type for hotel in Delhi?
• Update the price of all rooms by 5%.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Consider the following Relational database.

27

The Structured Query
Language

 Employees (eno, ename, address, basic_salary)
 Projects (Pno, Pname, enos-of-staff-alotted)
 Workin (pno, eno, pjob)

Two queries regarding the data in the above database have been formulated in
SQL. Describe the queries in English sentences.

(i) SELECT ename

FROM employees
WHERE eno IN (SELECT eno

 FROM workin
 GROUP BY eno
 HAVING COUNT (*) = (SELECT COUNT (*) FROM projects));

(ii) SELECT Pname
FROM projects
WHERE Pno IN (SELECT Pno

 FROM projects
 MINUS
 GROUP BY eno
 (SELECT DISTINCT Pno FROM workin));

……………………………………………………………………………………..

……………………………………………………………………………………..

…………………………………………………………………………………….

……………………………………………………………………………………..

……………………………………………………………………………………..

…………………………………………………………………………………….

1.9 SUMMARY

This unit has introduced the SQL language for relational database definition,
manipulation and control. The SQL environment includes an instance of an SQL
DBMS with accessible databases and associated users and programmers. Each schema
definition that describes the database objects is stored in data dictionary/ system
catalog. Information contained in system catalog is maintained by the DBMS itself,
rather than by the users of DBMS.

The data definition language commands are used to define a database, including its
creation and the creation of its tables, indexes and views. Referential integrity
constraints are also maintained through DDL commands. The DML commands of
SQL are used to load, update and query the database. DCL commands are used to
establish user access to the database. SQL commands directly affect the base tables,
which contain the raw data, or they may affect database view, which has been created.
The basic syntax of an SQL SELECT statement contains the following keywords:
SELECT, FROM, WHERE, ORDER BY, GROUP BY and HAVING.

SELECT determines which attributes will be displayed in the query result table.
FROM determines which tables or views will be used in the query. WHERE sets the
criteria of the query, including any joins of multiple tables, which are necessary.
ORDER BY determines the order in which the result will be displayed. GROUP BY is
used to categorize results. HAVING is used to impose condition with GROUP BY.

28

Structured Query
Language and
Transaction Management

1.10 SOLUTIONS / ANSWERS

Check Your Progress 1

1)
 Advantages
• A standard for database query languages
• (Relatively) Easy to learn
• Portability
• SQL standard exists
• Both interactive and embedded access
• Can be used by specialist and non-specialist.

Yes, SQL has disadvantages. However, they are primarily more technical with reference
to Language features and relational model theories. We are just putting them here for
reference purposes.

Disadvantages

• Impedance mismatch – mixing programming paradigms with embedded access
• Lack of orthogonality – many different ways to express some queries
• Language is becoming enormous (SQL-92 is 6 times larger than predecessor)
• Handling of nulls in aggregate functions is not portable
• Result tables are not strictly relational – can contain duplicate tuples, imposes an

ordering on both columns and rows.

2. CREATE DOMAIN RoomType AS CHAR(1) ………….[Constraint (a)]
 CHECK(VALUE IN (S, F, D));

CREATE DOMAIN HotelNumbers AS HotelNumber

 CHECK(VALUE IN (SELECT hotelNo FROM Hotel));
 [An additional constraint for

 hotel number for the application]

 CREATE DOMAIN RoomPrice AS DECIMAL(5, 2)
 CHECK(VALUE BETWEEN 1000 AND 10000);

 CREATE DOMAIN RoomNumber AS VARCHAR(4)
 CHECK(VALUE BETWEEN ‘1’ AND ‘100’);

[Constraint (c), one additional character is kept instead of 3
we have used 4characters but no space wastage as varchar]

 CREATE TABLE Room(
 roomNo RoomNumber NOT NULL,
 hotelNo HotelNumbers NOT NULL,
 type RoomType NOT NULL DEFAULT S,
 price RoomPrice NOT NULL,
 PRIMARY KEY (roomNo, hotelNo),
 FOREIGN KEY (hotelNo) REFERENCES Hotel
 ON DELETE CASCADE ON UPDATE CASCADE);
 CREATE DOMAIN GuestNumber AS CHAR(4);

29

The Structured Query
Language

 CREATE TABLE Guest(
 guestNo GuestNumber NOT NULL,
 guestName VARCHAR(20) NOT NULL,
 guestAddress VARCHAR(50) NOT NULL);

 CREATE DOMAIN GuestNumbers AS GuestNumber
 CHECK(VALUE IN (SELECT guestNo FROM Guest));
 [A sort of referential constraint expressed within domain]

 CREATE DOMAIN BookingDate AS DATETIME
 CHECK(VALUE > CURRENT_DATE); [constraint (d)]

 CREATE TABLE Booking(
 hotelNo HotelNumbers NOT NULL,
 guestNo GuestNumbers NOT NULL,
 dateFrom BookingDate NOT NULL,
 dateTo BookingDate NULL,
 roomNo RoomNumber NOT NULL,
 PRIMARY KEY (hotelNo, guestNo, dateFrom),
 FOREIGN KEY (hotelNo) REFERENCES Hotel
 ON DELETE CASCADE ON UPDATE CASCADE,
 FOREIGN KEY (guestNo) REFERENCES Guest
 ON DELETE NO ACTION ON UPDATE CASCADE,
 FOREIGN KEY (hotelNo, roomNo) REFERENCES Room
 ON DELETE NO ACTION ON UPDATE CASCADE,
 CONSTRAINT RoomBooked
 CHECK (NOT EXISTS (SELECT *
 FROM Booking b
 WHERE b.dateTo > Booking.dateFrom AND
 b.dateFrom < Booking.dateTo AND
 b.roomNo = Booking.roomNo AND
 b.hotelNo = Booking.hotelNo)),
 CONSTRAINT GuestBooked
 CHECK (NOT EXISTS (SELECT *
 FROM Booking b
 WHERE b.dateTo > Booking.dateFrom AND
 b.dateFrom < Booking.dateTo AND
 b.guestNo = Booking.guestNo)));

3. FROM Specifies the table or tables to be used.
 WHERE Filters the rows subject to some condition.
 GROUP BY Forms groups of rows with the same column value.
 HAVING Filters the groups subject to some condition.
 SELECT Specifies which columns are to appear in the output.
 ORDER BY Specifies the order of the output.

If the SELECT list includes an aggregate function and no GROUP BY clause is being
used to group data together, then no item in the SELECT list can include any reference to
a column unless that column is the argument to an aggregate function.

30

Structured Query
Language and
Transaction Management

When GROUP BY is used, each item in the SELECT list must be single-valued per
group. Further, the SELECT clause may only contain:

• Column names.
• Aggregate functions.
• Constants.
• An expression involving combinations of the above.

All column names in the SELECT list must appear in the GROUP BY clause unless the
name is used only in an aggregate function.

3. Please note that some of the queries are sub-queries and queries requiring join.

The meaning of these queries will be clearer as you proceed further with the
Unit.

a) SELECT SNO
 FROM S
 WHERE CITY = ‘Delhi’
 AND STATUS > 20;

 Result:

SNO
S4

b) SELECT SNO, STATUS
 FROM S
 WHERE CITY = ‘Delhi’
 ORDER BY STATUS DESC;

 Result:

SNO STATUS
S4 40
S5 10

 c) SELECT FIRST.SNO, SECOND.SNO
 FROM S FIRST, S SECOND

WHERE FIRST.CITY = SECOND.CITY AND FIRST.SNO <
SECOND.SNO;

Please note that if you do not give the condition after AND you will
get some unnecessary tuples such as: (S4, S4), (S5, S4) and (S5, S5).

Result:

SNO SNO
S4 S5

d) SELECT DISTINCT SNAME
 FROM S, SP
 WHERE S.SNO = SP.SNO
 AND SP.PNO = ‘P2’;
 Result:

SNAME
Prentice Hall

31

The Structured Query
Language

McGraw Hill
Wiley
Pearson

OR
SELECT SNAME
FROM S
WHERE SNO = ANY (SELECT SNO

 FROM SP
 WHERE PNO = ‘P2’);

 e) SELECT SNAME
 FROM S

 WHERE SNO IN (SELECT SNO
 FROM SP
 WHERE PNO = ‘P2’);

f) SELECT DISTINCT PNO
 FROM SP SPX
 WHERE PNO IN (SELECT PNO
 FROM SP
 WHERE SP.SNO = SPX.SNO AND SPX.SNO < SP.SNO);

This query can also be answered using count and group by. Please formulate that.

 Result:

PNO
P1
P2

g) SELECT SNO

FROM S
WHERE CITY = (SELECT CITY
 FROM S
 WHERE SNO = ‘S1’);
 Result:

SNO
S1

h) SELECT SNAME
FROM S
WHERE EXISTS (SELECT *
 FROM SP
 WHERE SNO = S.SNO AND PNO = ‘P1’);

 Result:

SNAME
Prentice Hall
McGraw Hill

i) SELECT PNO

FROM SP
WHERE QUANTITY > 200 UNION (SELECT PNO
 FROM SP
 WHERE SNO = S2);

32

Structured Query
Language and
Transaction Management

 Result:

PNO
P1
P2

j) SELECT SNO

FROM S
WHERE STATUS > 25 OR STATUS IS NULL;

 Result:

SNO
S1
S2
S4
S5

k) SELECT COUNT (DISTINCT SNO)

FROM SP;

 Result: 4

 l) SELECT PNO, SUM(QUANTITY)
 FROM SP
 GROUP BY PNO;

 Result:
PNO SUM
P1 400
P2 1000

m) SELECT PNO
FROM SP
GROUP BY PNO
HAVING COUNT(*) > 1 ;

The query is a same as that of part (f)

n) SELECT PNO, MAX(QUANTITY)
FROM SP
WHERE QUANTITY > 200
GROUP BY PNO
HAVING SUM(QUANTITY) > 300
ORDER BY 2, PNO DESC;

o) UPDATE S
SET STATUS = 2 * STATUS
WHERE CITY = ‘Delhi’;

p) INSERT INTO TEMP
SELECT PNO
FROM SP
WHERE SNO = ‘S2’;

q) INSERT INTO SP(SNO,PNO,QUANTITY) < ‘S5’,’P7’,100> ;

Please note that part cannot be added without a supply in the present case.

33

The Structured Query
Language

Actually there should be another table for Parts

r) DELETE S, SP
WHERE SNO = (SELECT SNO
 FROM S
 WHERE CITY = ‘Mumbai’);

Check Your Progress 2

1) Each user has an authorization identifier (allocated by DBA).
 Each object has an owner. Initially, only owner has access to an object but the

owner can pass privileges to carry out certain actions on to other users via the
GRANT statement and take away given privileges using REVOKE.

2) CREATE VIEW HotelData(hotelName, guestName) AS
 SELECT h.hotelName, g.guestName
 FROM Hotel h, Guest g, Booking b
 WHERE h.hotelNo = b.hotelNo AND g.guestNo = b.guestNo AND
 b.dateFrom <= CURRENT_DATE AND
 b.dateTo >= CURRENT_DATE;

3) GRANT ALL PRIVILEGES ON HotelData
 TO Manager, Director WITH GRANT OPTION;
 GRANT ALL PRIVILEGES ON BookingOutToday
 TO Manager, Director WITH GRANT OPTION;

Check Your Progress 3

1) With a sub-query, the columns specified in the SELECT list are restricted to one

table. Thus, cannot use a sub-query if the SELECT list contains columns from
more than one table. But with a join operation SELECT list contains columns from
more than two tables.

2) Answers of the queries are:

• SELECT guestName, guestAddress FROM Guest
WHERE address LIKE ‘%Delhi%’
ORDER BY guestName;

• SELECT price, type FROM Room
 WHERE hotelNo =
 (SELECT hotelNo FROM Hotel
 WHERE hotelName = ‘GRAND Hotel’);

• SELECT * FROM Room r
 WHERE roomNo NOT IN
 (SELECT roomNo FROM Booking b, Hotel h
 WHERE (dateFrom <= CURRENT_DATE AND
 dateTo >= CURRENT_DATE) AND
 b.hotelNo = h.hotelNo AND hotelName = ‘GRAND Hotel’);

• SELECT hotelNo, COUNT(roomNo) AS count
FROM Room

 GROUP BY hotelNo;

• SELECT MAX(X)

34

Structured Query
Language and
Transaction Management

 FROM (SELECT type, COUNT(type) AS X
 FROM Booking b, Hotel h, Room r
 WHERE r.roomNo = b.roomNo AND b.hotelNo = h.hotelNo AND
 city = ‘LONDON’
 GROUP BY type);

• UPDATE Room SET price = price*1.05;

3) (i) – Give names of employees who are working on all projects.

(ii) - Give names of the projects which are currently not being worked upon.

1.11 FURTHER READINGS

Fundamentals of DatabaseSystems; Almasri and Navathe; Pearson Education Limited;
Fourth Edition; 2004.
A Practical Approach to Design, Implementation, and Management; Thomas
Connolly and Carolyn Begg; Database Systems, Pearson Education Limited; Third
Edition; 2004.
The Complete Reference; Kevin Lonely and George Koch; Oracle 9i, Tata McGraw-
Hill; Fourth Edition; 2003.
Jeffrey A. Hoffer, Marry B. Prescott and Fred R. McFadden; Modern Database
Management; Pearson Education Limited; Sixth Edition; 2004.

	Column Constraints: NOT NULL, UNIQUE, PRIMARY KEY, CHECK, DEFAULT, REFERENCES,
	
	
	
	
	
	SELECT ENAME, SAL, SAL+300

	SELECT EMPNO, ENAME, SAL, MGR
	SELECT ENAME FROM EMP
	SELECT ENAME FROM EMP
	SELECT ENAME, JOB, SAL FROM EMP
	
	It is used in the last portion of select statement
	By using this rows can be sorted

	Example 17: Sorting by multiple columns; ascending order on department number and descending order of salary in each department.
	Example 18: Find the total number of employees.
	Example 19: Find the minimum, maximum and average salaries of employees of department D1.
	Example 20: Find department number and Number of Employees working in that department.
	Example 21: Find department number and maximum salary of those departments where maximum salary is more than Rs 20000/-.

	Syntax is
	S
	Quantity
	Drop: A user-id can be deleted by using drop command.
	Accessing information about permissions to all users
	Simple views and Complex Views
	Feature

	Output:CODE NAMEADDRESS
	Indexes and Synonyms
	Finding details about created indexes: The data dictionary contains the name of index, table name and column names. For example, in Oracle a user-indexes and user-ind-columns view contains the details about user created indexes.
	
	
	
	Indexes cannot be modified.

	Multiple row operators: IN, ANY, ALL
	
	
	
	
	
	
	Check Your Progress 1

	P2
	McGraw Hill
	P2
	S2
	S4
	S5
	P2
	1000
	
	
	
	
	
	
	Check Your Progress 2

