
42

UNIT 2 DIVIDE AND CONQUER APPROACH

Structure Page Nos.

2.0 Introduction 42

2.1 Objective 42

2.2 General Issues in Divide and Conquer 43

2.3 Binary Search 45

2.4 Sorting 49

 2.4.1: Merge sort

 2.4.2: Quick sort

2.5 Integer multiplication 67

2.6 Matrix multiplication 70

2.7 Summary 75

2.8 Solution/Answers 76

2.9 Further Readings 81

2.0 INTRODUCTION

We have already mentioned in unit-1 of Block-1 that there are five fundamental

techniques which are used to design the Algorithm efficiently. These are: Divide and

Conquer, Greedy Method, Dynamic Programming, Backtracking and Branch and

Bound. Out of these techniques Divide & Conquer is probably the most well-known.

Many useful algorithms are recursive in nature. To solve a given problem, they call

themselves recursively one or more times. These algorithms typically follow a divide

& Conquer approach. A divide & Conquer method works by recursively breaking

down a problem into two or more sub-problems of the same type, until these become

simple enough (i.e. smaller in size w.r.t. original problem) to be solved directly. The

solutions to the sub-problems are then combined to give a solution to the original

problem.

The following figure-1 show a typical Divide & Conquer Approach

Thus, in general, a divide and Conquer technique involves 3 Steps at each level of

recursion:

Subsolutions-1

Subsolutions-n

Subsolutions-2
Solution

Divide Conquer Combine

Figure1: Steps in a divide and computer technique

Any problem (such

as Quick sort,

Merge sort, etc.)

Sub-problem 1

Sub-problem 2

Sub-problem n

43

Divide and Conquer
Approach

Step 1: Divide the given big problem into a number of sub-problems that are similar

to the original problem but smaller in size. A sub-problem may be further

divided into its sub-problems. A Boundary stage arrives when either a direct

solution of a sub-problem at some stage is available or it is not further sub-

divided. When no further sub-division is possible, we have a direct solution

for the sub-problem.

Step 2: Conquer (Solve) each solutions of each sub-problem (independently) by

recursive calls; and then

Step 3: Combine the solutions of each sub-problems to generate the solutions of

original problem.

In this unit we will solve the problems such as Binary Search, Searching - QuickSort,

MergeSort, integer multiplication etc by using Divide and Conquer method;

2.1 OBJECTIVES

After going through this unit, you will be able to:

 Understand the basic concept of Divide-and-Conquer;

 Explain how Divide-and-Conquer method is applied to solve various

problems such as Binary Search, Quick-Sort, Merge-Sort, Integer

multiplication etc., and

 Write a general recurrence for problems that is solved by Divide-and-

Conquer.

2.2 GENERAL ISSUES IN DIVIDE AND CONQUER

Many useful algorithms are recursive in structure, they make a recursive call to itself

until a base (or boundary) condition of a problem is not reached. These algorithms

closely follow the Divide and Conquer approach.

To analyzing the running time of divide-and-conquer algorithms, we use a recurrence

equation (more commonly, a recurrence). A recurrence for the running time of a

divide-and-conquer algorithm is based on the 3 steps of the basic paradigm.

1) Divide: The given problem is divided into a number of sub-problems.

2) Conquer: Solve each sub-problem be calling them recursively.

(Base case: If the sub-problem sizes are small enough, just solve the sub-

problem in a straight forward or direct manner).

3) Combine: Finally, we combine the sub-solutions of each sub-problem (obtained in

step-2) to get the solution to original problem.

Thus any algorithms which follow the divide-and-conquer strategy have the following

recurrence form:

44

Design Techniques Where

 If the problem size is small enough (say, n ≤ c for some constant c), we have a

 base case. The brute-force (or direct) solution takes constant time: Θ(1)

 Otherwise, suppose that we divide into a sub-problems, each 1/b of the size of

the original problem of size n.

 Suppose each sub-problem of size n/b takes time to solve and since

there are a sub-problems so we spend total time to solve sub-

problems.

 is the cost(or time) of dividing the problem of size n.

 is the cost (or time) to combine the sub-solutions.

Thus in general, an algorithm which follow the divide and conquer strategy have the

following recurrence:

Example: Merge Sort algorithm closely follows the Divide-and-Conquer approach.

The following procedure MERGE_SORT (A, p, r) sorts the elements in the subarray

A [p ,…, r]. If p ≥ r, the subarray has at most one element and is therefore already

sorted. Otherwise, the Divide step is simply computer an index q that partitions A [p,

… , r] into two sub-arrays: A [p, …, q] containing ceil (n/2) elements, and A[q+1, …,

r] containing floor (n/2) elements.

Figure 2: Steps in merge sort algorithms

To set up a recurrence T(n) for MERGE SORT algorithm, we can note down the

following points:

 Base Case: MERGE SORT on just one element (n=1) takes constant time i.e.

Where

 T(n) = running time of a problem of size n

 a means “In how many part the problem is divided”

 means “Time required to solve a sub-problem each of size (n/b)”

 D(n) + C(n) = f(n) is the summation of the time requires to divide the

problem and combine the sub-solutions.

(Note: For some problem C(n)=0, such as Quick Sort)

MERGE_SORT (A, p, r)

1. if (p < r)

2. then q ← *(p + r)/2] /* Divide

3. MERGE_SORT (A, r, q) /* Conquer

4. MERGE_SORT (A, q + 1, r) /* Conquer

5. MERGE (A, p, q, r) /* Combine

45

Divide and Conquer
Approach

 When we have n > 1 elements, we can find a running time as follows:

(1) Divide: Just compute q as the middle of p and r, which takes constant

time. Thus

(2) Conquer: We recursively solve two sub-problems, each of size n/2, which

contributes

 to the running time.

(3) Combine: Merging two sorted subarrays (for which we use MERGE (A,

p, r) of an n-element array) takes time , so .

Thus , which is a linear

function of n.

Thus from all the above 3 steps, a recurrence relation for MERGE_SORT (A, 1, n) in

the worst case can be written as:

Now after solving this recurrence by using any method such as Recursion-tree or

Master Method (as given in UNIT-1), we have .

This algorithms will be explained in detailed in section 2.4.2

2.3 BINARY SEARCH

Search is the process of finding the position (or location) of a given element (say x) in

the linear array. The search is said to be successful if the given element is found in the

array otherwise it is considered unsuccessful.

A Binary search algorithm is a technique for finding a position of specified value (say

x) within a sorted array A. the best example of binary search is ―dictionary‖, which

we are using in our daily life to find the meaning of any word. The Binary search

algorithm proceeds as follow:

(1) Begin with the interval covering the whole array; binary search repeatedly divides

the search interval by half.

(2) At each step, the algorithm compares the input key (or search) value x with the key

value of the middle element of the array A.

(3) If it matches, then a searching element x has been found, so then its index, or

position, is returned. Otherwise, if the value of the search element x is less than the

item in the middle of the interval; then the algorithm repeats its action on the sub-

array to the left of the middle element or, if the search element x is greater than the

middle element‘s key, then on the sub-array to the right.

46

Design Techniques (4) We repeatedly check until the searched element is found or the interval is empty,

which indicates x is ―not found‖.

Figure 3: Binary search algorithms

Analysis of Binary search:

Method1:

Let us assume for the moment that the size of the array is a power of 2, say . Each

time in the while loop, when we examine the middle element, we cut the size of the

sub-array into half. So before the 1
st
 iteration size of the array is 2

k
.

After the 1
st
 iteration size of the sub-array of our interest is: 2

k-1

After the 2
nd

 iteration size of the sub-array of our interest is:

……

…….

After the .iteration size of the sub-array of our interest is :

So we stop after the next iteration. Thus we have at most

.iterations.

Since with each iteration, we perform a constant amount of work: Computing a mid

point and few comparisons. So overall, for an array of size n, we perform

 comparisions. Thus

Method 2:

Binary search closely follow the Divide-and-conquer technique.

BinarySearch_Iterative(A[1…n],n,x)

/* Input: A sorted (ascending) linear array of size n.

Output: This algorithm find the location of the search element x in linear array A. If

search ends in success, it returns the index of the searched element x, otherwise returns

-1 indicating x is “not found”. Here variable low and high is used to keep track of the

first element and last element of the array to be searched, and variable mid is used as

index of the middle element of the array under consideration. */

{

 low=1

 high=n

 while(low<=high)

 {

 mid= (low+high)/2

 if(A[mid]==x]

 return mid; // x is found

 else if(x<A[mid])

 high=mid-1;

 else low=mid+1;

 }

 return -1 // x is not found

 }

47

Divide and Conquer
Approach

We know that any problem, which is solved by using Divide-and-Conquer having a

recurrence of the form:

Since at each iteration, the array is divided into two sub-arrays but we are solving only

one sub-array in the next iteration. So value of a=1 and b=2 and f(n)=k where k is a

constant less than n.

Thus a recurrence for a binary search can be written as

 ; by solving this recurrence using substitution method, we have:

.

Example1: consider the following sorted array DATA with 13 elements:

Illustrate the working of binary search technique, while searching an element (say

ITEM)

(i) 40 (ii) 85

Solution

We apply the binary search to DATA[1,…13] for different values of ITEM.

(a) Suppose ITEM = 40. The search for ITEM in the array DATA is pictured

in Fig.1, where the values of DATA[Low] and DATA[High] in each stage

of the algorithm are indicated by circles and the value of DATA[MID] by

a square. Specifically, Low, High and MID will have the following

successive values:

1. Initially, Low = 1 and High = 13, Hence

 MID = so DATA

2. Since 40 < 55, High has its value changed by High = MID – 1 = 6.

Hence MID = so DATA

3. Since 40 < 30, Low has its value changed by Low = MID – 1 = 4.

Hence MID = so DATA

11 22 30 33 40 44 55 60 66 77 80 88 99

48

Design Techniques

We have found ITEM in location LOC = MID = 5.

(1) 22, 30, 33, 40, 44, 60, 66, 77, 80, 88,

(2) 22, 33, 40, 55, 60, 66, 77, 80, 88, 99

(3) 11, 22, 30, 55, 60, 66, 77, 80, 88, 99 [Successful]

Figure 4: Binary search for ITEM = 40

(b) Suppose ITEM = 85. The binary search for ITEM is pictured in Figure 2.

Here Low, High and MID will have the following successive values:

1. Again initially, Low = 1, High = 13, MID = 7 and DATA[MID] = 55.

2. Since 85 > 55, Low has its value changed by Low = MID + 1 = 8. Hence

 MID = so DATA

3. Since 85 > 77, Low has its value changed by Low = MID + 1 = 11. Hence

 MID = so DATA

4. Since 85 > 88, High has its value changed by High = MID – 1 = 11.

Hence

MID = so

DATA

 (Observe that now Low = High = MID = 11.)

Since 85 > 80, Low has its value changed by Low = MID + 1 = 12. But now

Low > High, Hence ITEM does not belong to DATA.

(1) 22, 30, 33, 40, 44, 60, 66, 77, 80, 88,

(2) 11, 22, 30, 33, 40, 44, 55, 66, 80, 88,

(3) 11, 22, 30, 33, 40, 44, 55, 60, 66, 77, 88, 99 [unsuccessful]

Figure 5: Binary search for ITEM = 85

Example 2: Suppose an array DATA contains elements. How many

comparisons are required (in worst case) to search an element (say ITEM) using

Binary search algorithm.

Solution: Observe that

 2
10

 = 1024 > 1000 and hence 2
20

 > 1000
2
 =

11, 55, 99,

11, 44, 30,

33, 40, 44,

11, 55, 99,

99 77, 60,

80

49

Divide and Conquer
Approach

Using the binary search algorithm, one requires only about 20 comparisons to find

the location of an ITEM in an array DATA with elements, since

 Check Your Progress 1

(Objective questions)

1. What are the three sequential steps of divide-and-conquer algorithms?

(a) Combine-Conquer-Divide

(b) Divide-Combine-Conquer

(c) Divide-Conquer-Combine

(d) Conquer-Divide-Conquer

2. Binary search executes in ___________ time.

(a) O(n) (b) O(log n) (c) O(n log n) (d) O(n
2
)

3. The recurrence relation that arises in relation with the complexity of

binary search is

 (where k is a constant)

(a) (b)

 (d)

4. Suppose an array A contains n=1000 elements. The number of

comparisons required (in worst case) to search an element (say x) using

binary search algorithm:

a) 100 b) 9 c)10 d) 999

5. Consider the following sorted array A with 13 elements

7 14 17 25 30 48 56 75 87 94 98 115 200

 Illustrate the working of binary search algorithm, while searching for ITEM

(i) 17 (ii) 118

6. Analyze the running time of binary search algorithm in best average and

worst cases.

2.4 SORTING

Sorting is the process of arranging the given array of elements in either increasing or

decreasing order.

Input: A sequence of n number

Output: A permutation (reordering) of the input sequence

such that .

In this Unit we discuss the 2 sorting algorithm: Merge-Sort and Quick-Sort

2.4.1 MERGE-SORT

Merge Sort algorithm closely follows the Divide-and-conquer strategy. Merge sort on

an input array A [1… n] with n-elements (n > 1) consists of (3) Steps:

50

Design Techniques

Divide: Divide the n-element sequence into two sequences of length n/2 and n/2

(say A1 = A(1), (2), …..A[n/2] and A2 A[n/2 +1], ….A[n])

Conquer: Sort these two subsequences A1 and A2 recursively using MERGE SORT;

and then

Combine: Merge the two sorted subsequences A1 and A2 to produce a single sorted

 subsequence.

The following figure shows the idea behind merge-sort:

 Figure 6: Merge sort

Figure 6: Illustrate the operation of two- way merge sort algorithm. We assume to

sort the given array A [1…n] into ascending order. We divide the given array A [1..n]

into 2 subarrays: A[1, … n/2] and [n/2 +1, …. n]. Each subarray is individually

sorted, and the resulting sorted subarrays are merged to produce a single sorted array

of n- elements.

For example, consider an array of 9 elements :{ 80, 45 15, 95, 55, 98, 60, 20, 70}

The MERGE-SORT algorithm divides the array into subarrays and merges them into

sorted subarrays by MERGE () algorithm as illustrated in arrows the (dashed line

arrows indicate the process of splitting and regular arrows the merging process).

A *1+, A*2+ ……………………, Av*n+

A*1+, A*2+, ……..A* n/2] A[n/2 +1+, ….., A*n+

Sorted Array

Merge

Recursively Sort A1

and A2 using MERGE-

SORT

Divide Array A into two halves of size

n/2 and n/2

Where is a …operator and
Is a floor operator

(A1) (A2)

n

Sorted Array

51

Divide and Conquer
Approach

 [1] [2] [3] [4] [5] [6] [7] [8] [9]

 80 45 15 95 55 98 60 20 70

 divide

 [1] [2] [3] [4] [5] [6] [7] [8] [9]

 80 45 15 95 55 98 60 20 70

 divide

[1] [2] [3] [4] [5] [6] [7] [8] [9]

80 45 15 95 55 98 60 20 70

divide

[1] [2] [3] [4] [5] [6] [7] [8] [9]

90 45 15 95 55 98 60 20 70

[1] [2] [4] [5] [6] [7] [8] [9]

80 45 55 95 60 98 20 70

merge

[1] [2] [6] [7] [8] [9]

45 80 20 60 70 98

 [1] [2] [3]

 15 45 80

 [1] [2] [3] [4] [5]

 15 45 55 80 95

 [1] [2] [3] [4] [5] [6] [7] [8] [9]

 15 20 45 55 60 70 80 95 98

From figure 7, we can note down the following points:

 1
st
, left half of the array with 5-elements is being split and merge; and next

second half of the array with 4-elements is processed.

 Note that splitting process continues until subarrays containing a single

element are produced (because it is trivially sorted).

Since, here we are always dealing with sub-problems, we state each sub-problem as

sorting a subarray A [p…r]. Initially p = 1 and r = n, but these values changes as we

recurse through sub-problems.

Figure 7: Two-way Merge Sort

52

Design Techniques Thus, to sort the subarray A[p…r]

1) Divide: Partition A [p…r] into two subarrays A [p…q] and A [q+1…r], where q is

the half way point of A [p…r].

2) Conquer: Recursively Sort the two subarrays A [p…q] and A [q+1..r].

3) Combine: Merge the two sorted subarray A [p..q] and A[q+1..r] to produce a single

sorted subarray A[p..r]. To accomplish this step, we will define a procedure MERGE

(A, p, q, r).

Note that the recursion stops, when the subarray has just 1 element, so that it is

trivially sorted.

Algorithm:

*This algorithm is for sorting the elements using Merge Sort.

 Input: An array A [p..r] of unsorded elements, where p is a beginning element of an

array and r as end element of array A.

Output: Sorted Array A [p..r].

Merge-Sort (A, P,r)

 {

1. if (p < r) /* Check for base case

 {

2. q ← (p + r)/2 /* Divide step

3. Merge-Sort (A,p,q) /* Conquer step

4. MERGE-SORT (A,q+1,r) /* Conquer step

5. MERGE (A,p,q,r) /* Combine step

 }

 }

Intial Call is MERGE-SORT (A,1,n)

Next, we define Merge (A, p, q, r), which is called by the Algorithm MERGE-SORT

(A, p, q).

Merging

Input: Array A and indices p,q, r s.t.

 P ≤ q < r

 Subarray A [p..r] is sorted and subarray A[q+1..r] is sorted. By the restrictions

on p, q,r, neither subarray is empty.

Output: The two subarrays are merged into a single sorted subarray in A [p..r]

53

Divide and Conquer
Approach

Figure 8: Merging Steps

The following Algorithm merge the two sorted subarray A [p.. r] and A [q+1..r] into

one sorted output subarray A [p..r].

Idea behind linear-time merging:

Think of two piles of cards:

 Each pile is sorted and placed face-up on a table with the smallest cards on top.

 We will merge these into a single sorted pile, face down on the table.

 Basic step:

→ Choose the smaller of the two top cards.

→ Remove it from its pile, thereby exposing a new top card.

 Repeatedly perform basic steps until one input pile is empty.

 Once one input pile is empty, just take the remaining input pile and place it face

down into the output pile.

 We put a special sentinel card and on the bottom of each input pile; when either

of the input pile hits ∞ first, means all the non sentinel cards of that pile have

already been placed into the output pile.

 Each basic step should take constant time, since we check just two top cards.

 There are ≤ n basic steps, since each basic step removes one card from the input

piles and we started with n cards in the input piles.

 Therefore this procedure should take O(n) time.

Merge (A, p, q, r)

1. n1 ← q – p + 1 // No. of elements in sorted subarray A [p..q]

2. n2 ← r – q // No. of elements in sorted subarray A[q+1 .. r]

 Create arrays L [1.. n1 +1] and R [1..n1 +1]

3. for i ← 1 to n1

4. do L[i] ← A [p + I -1] // copy all the elements of A [p..r] into L [1 .. n1]

5. for j ← 1 to n1

6. do R [j] ← A [q + j] // copy all the elements of A [q + 1, .. r] into

 R[1..n2]

7. L [n1 +1] ← ∞

8. R [n2 + 1] ← ∞

9. i ← 1

10. j ← 1

11. for k ← p to r

12. do if L [i] ≤ R [j]

13. then A [k] ← L [i]

14. i ← i +1

15. else A [k] ← R [j]

16. j ← j + 1

54

Design Techniques To understand both the algorithm Merge-Sort (A, p, r) and MERGE (A, p, q, r);

consider a list of (7) elements:

 1 2 3 4 5 6 7

A 70 20 30 40 10 50 60

 p q r

Figure 9: Merging algorithms

Then we will first make two sub-lists as:

MERGER-SORT (A, p, r) → MERGE-SORT (A, 1, 4)

MERGE-SORT (A, q +1, r) → MERGE-SORT (A, 5, 7)

 1 2 3 4 5 6 7

 70 20 30 40 10 50 60

 p q q+1 r

 (1) This sub array is

further sub-divided
 (4) this array

can be

subdivided as

 1 2

 70 20 30 40 10 50 60

 (2)This subarray

is a again divided
 (3) This subarray

can be

subdivided

 (5) Again

subdivided

1 2 3 4 5 6

70 20 30 40 10 50

 (6)Combine two

sorted subaaray

back to original

array A[p…r]

 (7) combine back

to original array

A[p..r]

 (9)combine

 1 2 \3 4 5 6

 20 70 30 40 10 50

 (10)

merge

 20 30 40 50 60 10 50 60

 (11)combine these two

sorted subarray

 1 2 3 4 5 6 7

 10 20 30 40 50 60 70

Figure 10: Illustration of merging process - 1

55

Divide and Conquer
Approach

Lets us see the MERGE operation more closely with the help of some example.

Consider that at some instance we have got two sorted subarray in A, which we have

to merge in one sorted subarray.

Ex:

Figure 11: Example array for merging

Now we call MERGE (A,1,4,7), after line 1 to line 10, we have

In figure (a), we just copy the A[p…q] into L[1..n1] and A[q+1,…r] into R[1…n2]

Variable I and j both are pointing to 1
st
 element of an array L & R, respectively.

Now line 11-16 of MERGE (A,p,q,r) is used to merge the two sorted subarray

L[1,…4] and R[1…4] into one sorted array [1…7]; (see figure b-h)

 1 2 3 4 5 6 7

A 20 30 40 70 10 50 60

 Sorted subarray 1 Sorted subarray 2

 1 2 3 4 5 6 7

A 20 30 40 70 10 50 60

 k

 1 2 3 4 5 1 2 3 4

L 20 30 40 70 R 10 50 60

 i

 J

A 10

 1 2 3 4 5 1 2 3 4

L 20 30 40 70 R 10 50 60

 i j

 (b)

Figure 12 (a) : Illustration of merging – II using line 1 to 10

56

Design Techniques

1

 10 20

 1 2 3 4 5 1 2 3 4

L 20 30 40 70 R 10 50 60

 i j

 (c)

 1 2 3

A 10 20 30

 1 2 3 4 5 1 2 3 4

L 20 30 40 70 R 10 50 60

 i j

 (d)

 1 2 3 4

 10 20 30 40

 1 2 3 4 5 1 2 3 4

L 20 30 40 70 R 10 50 60

 i j

 (e)

 1 2 3 4 5 6 7

 10 20 30 40 50

 1 2 3 4 5

L 20 30 40 70 R 10 50 60

 i j

 (f)

57

Divide and Conquer
Approach

Analysis of MERGE-SORT Algorithm

 For simplicity, assume that n is a power of 2 each divide step yields two sub-

problem, both of size exactly n/2.

 The base case occurs when n = 1.

 When n ≥2, then

Divide: Just compute q as the average of p and r D (n) = O(1)

Conquer: Recursively solve sub-problems, each of size 2T()

Combine: MERGE an n-element subarray takes O(n) time C (n) = O (n)

 D(n) = O (1) and C (n) = O(n)

 F (n) = D (n) + C (n) = O(n), which is a linear function in ‗n‘.

Hence Recurrence for Merge Sort algorithm can be written as:

 - (1)

This Recurrence 1 can be solved by any of two methods:

(1) Master method or

(2) by Recursion tree method:

 1 2 3 4 5 7

 10 20 30 40 50 60

 1 2 3 4 5

L 20 30 40 70 R 10 50 60

 i J

 (g)

 1 2 3 4 5 6 7

 10 20 30 40 50 60 70

 1 2 3 4 5

L 20 30 40 70 R 10 50 60

 i j

 (h)

Figure 13 (a) : Illustration of merging – III using line 11 to 16

58

Design Techniques

1) Master Method:

 -- (1)

By comparing this recurrence with = + f (h)

We have: a = 2

 b = 2

 f (n) = n

 n
log

b
a
 = n

log
2
2
 = n ; Now compare f(n) with n

log
2
2 i-e

(n
 log

2
2
 = n)

Since f(n) = n = O (n
log

2
2
) Case 2 of Master Method

 T (n) = (n
log

b
a
. logn)

 = (n. logn)

2. Method 2: Recursion Tree Method

We rewrite the recurrence as:

Recursion tree:

Total = C.n + C.n+ …… (log2n + 1) terms

 = C.n (logn+1)

 =

2.4.2 QUICK-SORT

Quick-Sort, as its name implies, is the fastest known sorting algorithm in practice.

The running time of Quick-Sort depends on the nature of its input data it receives for

sorting. If the input data is already sorted, then this is the worst case for quick sort. In

 C. n

Figure A

 C. n

 C. C.

T T T T

Figure B

Log2n

 C. n

 C. C.

C. C. C. C.

 C C C C C C C C

C.n

C.n

C.n

C.n

59

Divide and Conquer
Approach

this case, its running time is O (n
2
). Inspite of this slow worst case running time,

Quick sort is often the best practical of this choice for sorting because it is remarkably

efficient on the average; its expected running time in (nlogn).

Avanta: - Quick Sort algorithm has the advantage of ―Sorts in place‖

Quick Sort

The Quick sort algorithm (like merge sort) closely follows the Divide-and Conquer

strategy. Here Divide-and-Conquer Strategy involves 3 steps to sort a given subarray

A[p..r].

1) Divide: The array A [p. . r] is partitioned (rearranged) into two (possibility

empty) sub-array A [p..q-1] and A [q+1,..r], such that each element in the left subarray

A[p…q-1] is ≤ A [q] and A[q] is ≤ each element in the right subarray A[q+1…r]. to

perform this Divide step, we use a PARTITION procedure; which returns the index q,

where the array gets partitioned.

2) Conquer: These two subarray A [p…q-1] and A [q+1..r] are sorted by recursive

calls to QUICKSORT.

3) Combine: Since the subarrays are sorted in place, so there is no need to combine

the subarrays.

Now, the entire array A{p..r} is sorted.

The basic concept behind Quick-Sort is as follows:

Suppose we have an unsorted input data A [p…r] to sort. Here PARTITION

procedures always select a last element A[r] as a Pivot element and set the position of

this A[r] as follows:

P r

A[1] A[2] - --- A[n]

1 2 3 n

A[1] A[2] A[q-1] A[q] A[q+1] ---------

A[r]

 q

 (Sub array of size) (subarray of size)

 The element of A[1…q - 1] The element of A [q+1..r]

is ≤ A[q] is ≥ A[q]

1) Worst Case (when input array is already sorted):

2) Best Case (when input data is not sorted):

3) Average Case (when input data is not sorted & Partition of array is not

unbalance as worst case) :

60

Design Techniques These two subarray A [p…q-1] and A[q+1..r] is further divided by recursive call to

QUICK-SORT and the process is repeated till we are left with only one-element in

each sub-array (or no further division is possible).

p

A[1] A[2] ….. A[q-1] A[q] A[q+1] …… A[r]

……. …… ………

 Pivot elements Pivot elements

 …………………………………...1 1 1 1 1…1

(size of each subarray is now 1) Sorted Array A[p…r]

Pseudo-Code for QUICKSORT:

 To sort an array A with n-elements, a initial call to QuickSort in QUICKSORT

(A, 1, n)

 QUICKSORT (A, p, r) uses a procedure Partition (), which always select a last

element A[r], and set this A[r] as a Pivot element at some index (say q) in the

array A[p..r].

The PARTITION () always return some index (or value), say q, where the array

A[p..r] partitioned into two subarray A[p..q-1] and A[q+1…r] such that A[p..q-1]

≤ A[q] and A[q] ≤ A[q+1…r].

 QUICK SORT (A, p, r)

 { If (p < r) /* Base Condition

 q← PARTITION (A, p, r) /* Divide Step*/

 QUICKSORT (A, p, q-1) /* Conquer

 QUICKSORT (A, q+1, r) /* Conquer

61

Divide and Conquer
Approach

Pseudo code for PARTITION:

The running time of PARTITION procedure is (n), since for an array A[a…n], the

loop at line 3 is running 0(n) time and other lines at code take constant time i.e. 0(1)

so overall time is 0(n).

To illustrate the operational PARTITION procedure, consider the 8-element array:

A 2 8 7 1 3 5 6 4

 1 2 3 4 5 6 7 8

Step 1: The input array with initial value of I, j, p and r.

x ← A*r+ = 4
I ← p-1 = 0

 p r

 2 8 7 1 3 5 6 4
i 1 2 3 4 5 6 7 8

Step 2: The array A after executing the line 3 – 6

a)

J = 1 to 7

1) j = 1; if A*1+ ≤ a i.e. 2 ≤ A[r] YES
 Therefore i ← i + 1 = 0 + 1 = 1
 exchange (A*1+ ↔ A*1+)

 p r

 2 8 7 1 3 5 6 4
 i

PARTITION (A, p, r)

1: x ← A[r] /* select last element

2: i ← p – 1 /* i is pointing one position

 before than p, initially

3: for j ← p to r − 1 do

4: if A[j] ≤ r A [r]

5: i ← i + 1

6: Exchange (A[i] ↔ A[j])

 }

 }/* end for

7: Exchange (A [i + 1] and A[r])

8: return (i+ 1)

 }

62

Design Techniques

b)

2) j = 2; if A*2+ ≤ 4 i.e 8 ≤ 4 No
 So line 5 – 6, will not be executed
 Thus:

 p r

 2 8 7 1 3 5 6 4
 i

c)

3) j = 3; if A*3+ ≤ 4 i.e 7 ≤ 4 No; so line 5-6 will not execute

4) j = 4; if A*4+ ≤ 4 i.e 1 ≤ 4 YES
 So i ← i + 1 = 1 + 1 = 2
 exchange (A*2+ ↔ A*4+)

 1 2 3 4 5 6 7 8

 2 8 1 7 1 8 3 5 6 4
 i

d)

e)

5) j = 5; A*5+ ≤ 4 i.e 3 ≤ 4 YES
 i ← i + 1 = 2 + 1 = 3

 1 2 3 4 5 6 7 8

 2 1 7 3 8 3 7 5 6 4

 i

 exchange (A *3+ ↔ A *5+)

6) j = 6; A*6+ ≤ 4 i.e 5≤ 4 NO

7) j = 7: A *7+ ≤ 4 i.e 6 ≤ 4 NO
 Now for loop is now finished; so finally line 7 is execute i.e
 exchange (A*4+ ↔ A*8+), so finally we get:

 1 2 3 4 5 6 7 8

 2 1 3 4 7 5 6 8

 i

 Finally
we return (i + 1) i.e (3 + 1) = 4; by this partition procedure;
 Now we can easily see that all the elements of A*1, … 3+ ≤ A*4+; and all
 the elements of A*5, ..8+ ≥ A*4+. Thus

 i

2 1 3 4 7 5 6 8

 Left subarray q Right subarray

To sort the entire Array A{1..8}; there is a Recursive calls to QuickSort on both the subarray
A*..3+ and A*5…8+.

63

Divide and Conquer
Approach

Performance of Quick Sort

The running time of QUICK SORT depends on whether the partitioning is balanced or

unbalanced. Partitioning of the subarrays depends on the input data we receive for

sorting.

Best Case: If the input data is not sorted, then the partitioning of subarray is balanced;

in this case the algorithm runs asymptotically as fast as merge-sort (i.e. 0(nlogn)).

Worst Case: If the given input array is already sorted or almost sorted, then the

partitioning of the subarray is unbalancing in this case the algorithm runs

asymptotically as slow as Insertion sort (i.e. (n
2
)).

Average Case: Except best case or worst case.

The figure (a to c) shows the recursion depth of Quick-sort for Best, worst and

average cases:

 n- elements

≈ elements

≈ elements

≈

≈

≈

≈

 (a) Best Case

 n- elements

 (n-1) elements

 (n-2) elements

 (n-3) elements

1
(b) Worst Case

64

Design Techniques n- elements

≈ n⁄10 elements ≈ 9n⁄10 elements

(c) Average Case

Best Case (Input array is not sorted)

The best case behaviour of Quicksort algorithm occurs when the partitioning

procedure produces two regions of size ≈ elements.

In this case, Recurrence can be written as:

Method 1: Using Master Method; we have a=2; b=2, f(n)=n and n
log

b
a
 = n

log
2
2
= n

 F(n) = n= 0 (n
log

2
2
) →Case 2 of master method

Method 2: Using Recursion Tree:

 C.n C.n C.n C.n

 C.n

C.n

 C C C C C C C C C.n

 Total = C.n + C.n+ - - - - - -+ lognn terms (c)

 = C.n logn

 = (nlogn)

Log2n

65

Divide and Conquer
Approach

Worst Case:

[When input array is already sorted]

The worst case behaviour for QuickSort occurs, when the partitioning procedures one

region with (n-1) elements and one with 0-elements → completely unbalanced

partition.

In this case:

T(n) = T(n-1) + T(0) + (n)

 = T(n-1) + 0 + C.n

Recursion Tree:

 C.n C.n

 C.(n-1) o C.(C-1)

 n C.(n-2) o C.(C-2)

C.2

C.2

 C.1 o C.1

Total = C (n + (n-1) + (n-2) + -------+2+1)

 = = 0(n
2
)

Average Case

Quick sort average running time is much closer to the best case.

Suppose the PARTITION procedure always produces a 9-to-1 split so recurrence can

be:

66

Design Techniques

Recursion Tree:

 C.n C.n

 Log10/9n

 C.n

Log10n

C.n

 C.1 C.1 C.n

For Smaller Height: For Bigger height

Total = C.n+C.n+----log10n times Total = C.n.+C.n +---log10/9n

 = C.nlog10n = C.nlog10/9n

 = Ώ (nlogn) = 0(nlogn)

 T(n) = Ώ (nlogn) — (1)

 & T (n) = 0(nlogn) — (2)

 Check Your Progress 2

(Objective questions)

1) Which of the following algorithm have same time complexity in Best, average and

worst case:

a) Quick sort b) Merge sort c) Binary search d) all of these

2) The recurrence relation of MERGESORT algorithm in worst case is:

 a) b)

 c) d)

3) The recurrence relation of QUICKSORT algorithm in worst case is:

 a) b)

 c) d)

4) The running time of PARTITION procedure of QUICKSORT algorithm is

 a) b) c) d)

5) Suppose the input array A[1…n] is already in sorted order (increasing or decreasing)

then it is _______ case situation for QUICKSORT algorithm

a) Best b) worst c) average d) may be best or worst

6) Illustrate the operation of MERGESORT algorithm to sorts the array:

70 35 5 85 45 88 50 10 60

 T(n) = (nlogn)

67

Divide and Conquer
Approach

7) Show that the running time of MERGESORT algorithm is

8) Illustrate the operation of PARTITION Procedure on the array

9) Show that the running time of PARTITION procedure of QUICKSORT algorithm

on a Sub-array on size is Θ .

10) Show that the running time of QUICKSORT algorithm in the best case is

11) Show that the running time of QUICKSORT algorithm is when all

elements of array A have the same value.

12) Find the running time of QUICKSORT algorithm when the array A is sorted in

non increasing order.

2.5 INTEGER MULTIPLICATION

Input: Two n-bit decimal numbers x and y are represented as:

 X = < xn-1 xn-2 --------x1x0 > and

 Y = < yn-1 yn-2 --------y1y0 >, where each xi and yi E 0, 1 ….9 .

Output: The 2n-digit decimal is representative of the product x.y;

x. y = z= z2n-2 z2n-3 …….z1 z0

Note: The algorithm, which we are discussing here, works for any number base, e.g.,

binary, decimal, hexadecimal etc. For simplicity matter, we use decimal

number.

In 1962, A.A. Karatsuba discovered an asymptotically faster algorithm 0(n
1.59

) for

multiplying two n-digit numbers using divide & conquer approach.

A Divide & Conquer based algorithm splits the number X and Y into ② equal parts as:

X= a b = xn-1 xn-2.------------X

┌n/2┐
X ┌n/2┐------------- x1

x0

= a × 10
n/2

 +

b

 n/2 n/2

Y= c d = yn-1 yn-2.------------X

┌n/2┐

X ┌n/2┐ 1-------------

y1 y0
= c × 10

n/2
 +

d

 n/2 n/2

The straight forward method (Broute force method) requires 0(n
2
) time to multiply two

n-bit numbers. But by using divide and conquer, it requires only 0(n
log

2
3
) i.e. 0(n

1.59
)

time.

68

Design Techniques Note: Both number X and Y should have same number of digits; if any number has

less number of digits then add zero‘s at most-significant bit position. So that we can

easily get a, b, c and d of - digits. Now X and Y can be written as:

X = a 10
n/2

+b -----①

Y = c 10
n/2

+d ------②

For example : = largest integer less than or equal to

If X = 1026732

 Y = 743914

Then X = 1026732 = 1026 x 10
3
 + 732

 Y = 0743914 = 0743 x 10
3
 + 914

Now we can compute the product as:

Z = X.Y

X.Y = --------- (1)

Where a, b, c, d is - digits. This equation ⊛ requires 4 multiplication of size –

digits and 0(n) additions; Hence

After solving this recurrence using master method, we have: T(n) = θ(n

2
); So direct

(or Brute force) method requires O (n
2
) time.

Karatsuba method (using Divide and Conquer)

In 1962, A.A. Karatsuba discovered a method to compute X.Y (as in Equation(1)) in

only 3 multiplications, at the cost of few extra additions; as follows:

Let U = (a+b).(c+d)

 V = a.c

 W = b.d

Now X.Y = V. ----------- (2)

Now, here, X.Y (as computed in equation (2)) requires only 3 multiplications of size

n/2, which satisfy the following recurrence:

 T (n) =
)(0)2/(3

)1(0

1

nnT

nif

Otherwise

Where 0(n) is the cost of addition, subtraction and digit shift (multiplications by

power of 10‘s), all these takes time proportional to ‗n‘.

69

Divide and Conquer
Approach

Method 1: - (Master Method)

a = 3

b = 2

f(n) = n

n
log

b
a
 = n

log
2

3

f(n)=n=0(n
log

2
3-є

) case 1 of Master Method

 T(n) = θ(n
log

2
3
)

 θ(n

1.59
)

Method 2 (Substitution Method)

 =
Now

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

 =

70

Design Techniques

 =

 =

 =

 =

2.6 MATRIX MULTIPLICATION

Let A and B be two (n x n) – matrices.

A = (aij) I,j = 1…n [aij] wher i,j = 1…….n

B = (bij) i.j = 1…n cij B= [bij] where i, j = n

The product matrix C = A.B. = (Cij)i, j =1…n is also an (n x n) matrix, whose (i,j)
th

elements is defined as:

Straight forward method:

To compute Cij using this formula, we need multiplications.

As the matrix C has (n
2
) elements, the time for the resulting matrix multiplication is

1) Divide & Conquer Approach:

The divide and conquer strategy is yet another way to compute the product of two (n x

n) matrices. Assuming that n is an exact power of 2 (i.e. n=2
k
). We divide each of A,

B and C into four

22

nn
matrices. i.e.

 and B = where each Aij and Bij are sub matrices of size

22

nn
,

i.e. C11 = A11B11+ A12B21

C12 = A11B12+ A12B22

C21 = A21B11+ A22B21

C22 = A21B12+ A22B22

Here all Aij, Bij are sub matrices of size
22

nn
, (2)

71

Divide and Conquer
Approach

Algorithm Divide and Conquer Multiplication (A,B)

1. n ← no. of rows of A

2. if n = 1 then return (a11 b11)

3. else

4. Let Aij, Bij (for i,j = 1,2, be
22

nn
 submatrices)

 S.t and

5. Recursively compute A11B11, A12B21, A11B12,……. A22B22

6. Compute C11 = A11. B11 + A12. B21

 C12 = A11. B12 + A12. B22

 C21 = A21. B11 + A22. B21

 C22 = A21. B21 + A22. B22

7. Return

Analysis of Divide and Conquer based Matrix Multiplication

Let T(n) be the no. of arithmetic operations performed by D&C-MATMUL.

 Line 1,2,3,4,7 require 1) arithmetic operations.

 Line 5, requires 8T arithmetic operations.

(i.e. in order to compute AB using e.g. (2), we need 8- multiplications of

matrices).

 Line 6 requires 4 =
2
)

(i.e 4 additions of matrices)

So the overall computing time, T(n), for the resulting Divide and conquer Matrix

Multiplication

Using Master method, a = 8, b = 2 and f(n) = n
2
; since

 f(n) = n
2
 = O (n

log2€)
 => case 1of master method

 T (n) = Q (n
log

2
8)

= Q (n
3
)

Now we can see by using V. Stressen‘s Method, we improve the time complexity of

matrix multiplication from O(n
3
) to O (n

2.81
).

 T(n) = 8T +
2
)

72

Design Techniques

3) Strassen’s Method

Volker Strassen had discovered a way to compute the Cij of Eg. (2) using only (7)

multiplication and (18) additions / subtractions.

This method involves (2) steps:

1) Let

P1 = (A11+A22) (B11+B22)

P2 = (A21+A22).B11

P3 = A11 (B12-B22)

P4 = A22 (B21-B11)

P5 = (A11+A12).B22

P6 = (A21-A11) (B11+B12)

P7 = (A12-A22) (B21+B22)

Recursively compute the (7) matrices P1, P2……. P7 as in eg. (I)

2) Then, the Cij are computed using the formulas in eg. (II).

C1 = P1+ P4 – P5 + P7

 C12 = P3+ P5

 C21 = P2+ P4

 C22 = P1+ P3 - P2 + P6

Here the overall computing time

 (1) n 2

7T n
2

Using master method: a = 7, b = 2 and n
log

b
a
 = n

log
2
7
 = n

2.81
 f(n) = n

2
;

f(n) = n
2
 = O(n

log2€)
 => case 1of master method

 T (n) = Q (n
log

b
a)

= Q (n
log

2
7
)

= Q (n
2.81

).

Ex:- To perform the multiplication of A and B

We define the following eight n/2 by n/2 matrices:

(I)

(II)

T(n) =

Otherwise

73

Divide and Conquer
Approach

Strassen showed how the matrix C can be computed using only 7 block

multiplications and 18 block additions or subtractions (12 additions and 6

subtractions):

The correctness of the above equations is easily verified by substitution.

P1 = (A11 + A22) x (B11 + B22) = + x +

 = x =

P2 = (A21 + A22) x B11 =

P3 = A11 x (B12 – B22) =

P4 = A22 x (B21 – B11) =

P5 = (A11 x A12) x B22 =

P6 = (A21 – A11) x (B11 + B12) =

P7 = (A12 – A22) x (B21 + B22) =

C11 = P21 + P4 – P5 + P7 =

C12 = P3 + P5 =

C21 = P2 + P4 =

C22 = P1 + P3 – P2 + P6 =

74

Design Techniques

C =

The overall time complexity of stressen‘s Method can be written as:

)(0)2/(7

1)1(0
)(

2nnT

nif
nT

Otherwise
a = 7; b = 2; f(n) = n2

nlog
b

a
= nlog

2
7 = n2.81

f (n) n

2
 = 0(n

log
2
7-є

) => case 1of master method

 T (n) = Q (n
log

2
7
)

= Q (n
2.81

).

The solution of this recurrence is T(n) = 0(n
log

2
7
) = 0(n

2.81
)

 Check Your Progress 3

(Objective questions)

1) The recurrence relation of INTEGER Multiplication algorithm using Divide &

conquer is:

 a) b)

 c) d)

2) Which one of the following algorithm design techniques is used in Strassen‘s

matrix multiplication algorithm?

(a) Dynamic programming

(b) Backtracking approach

(c) Divide and conquer strategy

(d) Greedy method

3) Strassen‘s algorithm is able to perform matrix multiplication in time_______.

 (a)O(n
2.61

) (b) O(n
2.71

) (c) O(n
2.81

) (d) O(n
3
)

4) Strassen‘s matrix multiplication algorithm (C = AB),if the matrices A and B are not

of type 2
n
 2

n
, the missing rows and columns are filled with ___________.

 (a) (b) 1‘s (c) -1‘s (d) 2‘s

5) Strassen‘s matrix multiplication algorithm (C = AB), the matrix C can be

computed using only 7 block multiplications and 18 block additions or

subtractions. How many additions and how many subtractions are there out of 18?

 (a) 9 and 9 (b) 6 and 12 (c)12 and 6 (d) none of theses

6) Multiply 1026732 0732912 using divide and conquer technique

(use karatsuba method).

75

Divide and Conquer
Approach

7) Use Strassen‘s matrix multiplication algorithm to multiply the following two

matrices:

 A= B=

2.7 SUMMARY

 Many useful algorithms are recursive in structure as they make a recursive call to

itself until a base (or boundary) condition of a problem is not reached. These

algorithms closely follow the Divide and Conquer approach.

 Divide and Conquer is a top-down approach, which directly attack the complete

instance of a given problem and break down into smaller parts.

 Any divide-and-conquer algorithms consists of 3 steps:

 1) Divide: The given problem is divided into a number of sub-problems.

2) Conquer: Solve each sub-problem be calling them recursively.

 (Base case: If the sub-problem sizes are small enough, just solve the sub-

problem in a

 straight forward or direct manner).

3) Combine: Finally, we combine the sub-solutions of each sub-problem

(obtained in step-2)

 to get the solution to original problem.

 To analyzing the running time of divide-and-conquer algorithms, we use a

recurrence equation (more commonly, a recurrence). Any algorithms which

follow the divide-and-conquer strategy have the following recurrence form:

Where

T(n) = running time of a problem of size n

 a means ―In how many part the problem is divided‖

means ―Time required to solve a sub-problem each of size (n/b)‖

D(n) + C(n) = f(n) is the summation of the time requires to divide the problem

and combine the sub-solutions.

 Applications of divide-and conquer strategy are Binary search, Quick sort,

Merge sort, multiplication of two n-bit numbers and V. Strassen‘s matrix

multiplications.

76

Design Techniques The following table summarizes the recurrence relations and time complexity

of the various problems solved using Divide-and-conquer.

Problems

that follows

Recurrence relation Time complexity

Best Worst Average

Binary search

Quick Sort

Merge sort

Multiplication

of two n-bits

numbers

Strassen‘s

matrix

multiplication

Worst case:

Best case:

Worst Case:

Average:

Best case or worst:

Worst case:

Worst case:

O(1)

2.8 SOLUTIONS/ANSWERS

Check Your Progress 1

(Objective Questions): 1-c, 2-b, 3-a, 4-c,

Solution 5: Refer page number…….., example1 of binary search.

Solution 6: Best case: .

Worst case:

Binary search closely follow the Divide-and-conquer technique.

We know that any problem, which is solved by using Divide-and-Conquer having a

recurrence of the form :

Since at each iteration, the array is divided into two sub-arrays but we are solving only

one sub-array in the next iteration. So value of a=1 and b=2 and f(n)=k where k is a

constant less than n.

Thus a recurrence for a binary search can be written as

77

Divide and Conquer
Approach ; by solving this recurrence using substitution method,

we have:

.

Average case: Same as worst case:

Check Your Progress 2

(Objective Questions): 1-b, 2-c, 3-b, 4-c,5-b

Solution 6: Refer numerical question of merge sort on page number- ,

Solution 7: A recurrence relation for MERGE_SORT algorithm can be written as:

Using any method such as Recursion-tree or Master Method (as given in UNIT-1), we

have .

Solution 8:

Let

A[1…10] =

Here p = 1 r = 10

1 2 3 4 5 6 7 8 9 10

35 10 40 5 60 25 55 30 50 25

 x

(1)

(2)

i.e.,
p r

1 2 3 4 5 6 7 8 9 10

10 35 40 5 60 25 55 30 50 25

i

78

Design Techniques

(3)

(4)

i.e.,

1 2 3 4 5 6 7 8 9 10

10 5 40 35 60 25 55 30 50 25

 i

(5)

(6) j

i.e.,

1 2 3 4 5 6 7 8 9 10

10 5 25 35 60 40 55 30 50 25

 i

(7)

(8)

79

Divide and Conquer
Approach

Solution 9: By analyzing PARTITION procedure , we can see at line 3 to 6 for loop

is running Hence PARTITION procedure takes

Solution 10: A recurrence relation for QUICKSORT algorithm for best case can be

written as:

Using any method such as Recursion-tree or Master Method (as given in UNIT-1), we

have .

Solution 11: when all elements of array A have the same value, then we have a worst

case for QUICKSORT and in worst case QUICKSORT algorithm requires

time.

Solution 12: when the array A is sorted in non increasing order, then we have a worst

case for QUICKSORT and in worst case QUICKSORT algorithm requires

time.

Check Your Progress 3

(Objective Questions): 1-d, 2-c, 3-c, 4-a,5-c

Solution 6

1026732 × 732912

In order to apply Karatsuba‘s method, first we make number of digits in the

two numbers equal, by putting zeroes on the left of the number having lesser

number of digits. Thus, the two numbers to be multiplied are written as

x = 1026732 and y = 0732912.

As n = 7, therefore [n/2] = 3, we write

x = 1026 × 10
3

+ 732 = a × 10
3

+ b

y = 0732 × 10
3

+ 912 = c 10
3

+ d

(9)

i.e.,

1 2 3 4 5 6 7 8 9 10

10 5 25 20 60 40 50 30 50 35

 i

Here PARTITION procedure finally return index (i+1)=4, where the array gets
partitioned. Now the two sub-arrays are

15 1 25 60 40 50 25 50 36

80

Design Techniques where a = 1026, b = 732

c = 0732, d = 912

Then

x × y = (1026 × 0732) 10
2×3

+ 732 × 912

+ [(1026 + 732) × (732 + 912)

─ (1026 × 0732) ─ (732 × 912)]10
3

= (1026 × 0732) 10
6

+ 732 × 912 +

 [(1758 × 1644) ─ (1026 × 0732) ─ (732 × 912)]10
3

 … (A)

Though, the above may be simplified in another simpler way, yet we want to

explain Karatsuba‘s method, therefore, next, we compute the products.

U = 1026 × 732

V = 732 × 912

P = 1758 × 1644

Let us consider only the product 1026 × 732 and other involved products may

be computed similarly and substituted in (A).

Let us write

U = 1026 × 732 = (10 × 10
2

+ 26) (07 × 10
2

+ 32)

 = (10 × 7) 10
4

+ 26 × 32 + [(10 + 7) (26 + 32)

─ 10 × 7 ─ 26 × 32)] 10
2

 = 17 × 10
4

+ 26 × 32 + (17 × 58 ─ 70 ─ 26 × 32) 10
2

At this stage, we do not apply Karatsuba‘s algorithm and compute the products of 2-

digit numbers by conventional method.

Solution7:

Strassen’s matrix multiplication:

We set C = A B and partition each matrix into four sub-matrices.

Accordingly,

, , ,

Applying Strassen‘s algorithm, we compute the following products:

81

Divide and Conquer
Approach

From the above products, we can compute C as follows:

C1 = P1+ P4 – P5 + P7 =[120]+[35]-[72]-[60]=[23]

C12 = P3+ P5 = [-20]+[72]=[52]

C21 = P2+ P4 = [13]+[35]=[48]

C22 = P1+ P3 - P2 + P6 =[120]+[-20]-[13]+[6]=[93]

2.9 FURTHER READINGS

1. Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson (PHI)

2. Foundations of Algorithms, R. Neapolitan & K. Naimipour: (D.C. Health &

Company, 1996).

3. Algoritmics: The Spirit of Computing, D. Harel: (Addison-Wesley Publishing

Company, 1987).

4. Fundamentals of Algorithmics, G. Brassard & P. Brately: (Prentice-Hall

International, 1996).

5. Fundamental Algorithms (Second Edition), D.E. Knuth: (Narosa Publishing

House).

6. Fundamentals of Computer Algorithms, E. Horowitz & S. Sahni: (Galgotia

Publications).

7. The Design and Analysis of Algorithms, Anany Levitin: (Pearson Education, 2003).

8. Programming Languages (Second Edition) ─ Concepts and Constructs,

 Ravi Sethi: (Pearson Education, Asia, 1996).

