

 23

Object Oriented
Methodology - 2 UNIT 2 OBJECT-ORIENTED

 METHODOLOGY- 2

Structure Page Nos.

2.0 Introduction 23
2.1 Objectives 23
2.2 Classes and Objects 23
2.3 Abstraction and Encapsulation 29
2.4 Inheritance 30
2.5 Method Overriding and Polymorphism 33
2.6 Summary 34
2.7 Solutions/Answers 35

2.0 INTRODUCTION

Object-oriented is a philosophy for developing software. In this approach we try to
solve the real-world problems using real-world ways, and carries the analogy down to
the structure of the program. In simple words we can say the Object-Oriented
Methodology is a method of programming in which independent blocks of codes or
objects are built to interact with each other similar to our real-world objects. It is
essential to understand the underlying concepts related to an object before you start
writing objects and their methods. You need to understand How objects and classes
are related? and How objects communicate by using messages?

OOP

Type-
extensibility

+
Polymorphism In this unit the concepts behind the object-oriented methodologies will be described,

which form the core of Object-oriented languages like Java and C++.

We will start with a basic concept of class and object, then we will learn the concept
of abstraction and encapsulation in relation to the object-oriented methodology. We
will also discuss the very important concept of inheritance, which helps in fast and
efficient development of programs. Finally we will discuss the concept of
polymorphism.

2.1 OBJECTIVES

After going through this unit, you should be able to:

• define class and object;
• explain the concept of abstraction and encapsulation;
• explain the concept of inheritance, and
• explain method overriding and polymorphism.

2.2 CLASSES AND OBJECTS

Before we move further, in the very first instance let’s define what is object-oriented
programming.

Definition: OOP is an approach that provides a way of modularizing programs by
creating partitioned memory blocks for both data and functions that can be used as
templates for creating copies of such modules on demand.

 24

Object Oriented
Technology & Java

This means that an object is considered to be a block of computer memory that stores
data and a set of operations that can access the stored data. Since memory blocks are
independent, the objects can be used in a variety of different programs without
modifications. To understand this definition, it is important to understand the notion
of objects and classes.

Fig. 1a: Car a real
World Object

Now let us discuss the notion of objects and classes.

Objects
Objects are the key to understand object-oriented technology. You can look around
and can see many examples of real-world objects like your car, your dog or cat, your
table, your television set, etc. as shown in Figure 1a and 1b.

These real-world objects share two characteristics: They all have state and behavior.
For example, dogs have state (name, color, breed, hungry) and behavior (barking,
fetching, and wagging tail). Cars have state (current gear, current speed, front
wheels, number of gears) and behavior (braking, accelerating, slowing down,
changing gears).

Fig. 1b: A real World

Object

Because Software objects are modeled after real-world objects, so in that they too
have state and behavior. A software object maintains its state in one or more
variables. A variable is an item of data named by an identifier. A software object
reflects its behavior with the help of method implementation. A method is an
implementation way of a function associated with an object.

Definition: An object is a software bundle of variables and related methods.
You can represent real-world objects by using software objects. For example, you
might have observed that real world dogs as software objects in an animation
program or a real-world airplane as software object in the simulator program that
controls an electronic airplane. You can also use software objects to model abstract
concepts.

Variable is a
symbol that
can hold
different
values at
different
times.

For example, an event is a common object used in GUI window systems to represent
the action of a user pressing a mouse button or a key on the keyboard. The illustration
given in Figure 2, is a common visual representation of a software object:

Variables
(State)

Methods
(behavior)

Figure 2: A Software Object

Everything that the software object knows (state) and can do (behavior) is expressed
by the variables and the methods within that object as shown in Figure 2. For
example, a software object that modeled your real-world car would have variables
that indicated the car’s current state: as its speed is 100 kmph, and its current gear is
the 5th gear. These variables used to represent the object’s state are formally known
as instance variables, because they contain the state for a particular car object. In
object-oriented terminology, a particular object is called an instance of the class to
which it belongs. In Figure 3 it is shown how a car object is modeled as a software
object.

 25

Object Oriented
Methodology - 2

. Error!

Change
cadence

Brake

Change
gears

1200 rpm

4th gear

100
kmph

Instance variable:
variables of a class,
which may have a
different value for
each object of that
class.

Figure 3: A Car Object

In addition to its variables, the software car would also have methods to brake,
change the cadence, and change gears. These methods are formally known as instance
methods because they impact or change the state of a particular car instance.

Class

In the real world, you often have many objects of the same kind. For example, your
car is just one of many cars in the world. In object-oriented terminology, we say that
your car object is an instance of the class known as car. Cars have some state (current
gear, current cadence, front and rear wheels) and behavior (change gears, brake) in
common. However, each car’s state is independent of the other and can be different
from other vehicles.

When building cars, manufacturers take advantage of the fact that cars share
characteristics, building many cars from the same blueprint. It would be very
inefficient to produce a new blueprint for every individual car manufactured. The
blueprint is a template to create individual car objects. A software

blueprint for
objects is
called a
class.

In object-oriented software, it is also possible to have many objects of the same kind
that share characteristics: rectangles, employee records, video clips, and so on. Like
the car manufacturers, you can take advantage of the fact that objects of the same
kind are similar and you can create a blueprint for those objects.

Definition: A class is a blueprint, or prototype, that defines the variables and the
methods common to all objects of a certain kind.

Private
Implementation
Details

Public API

 Figure 4: A Class Structure

The class for our car example would declare the instance variables necessary to
contain the current gear, the current speed, and so on, for each car object. The class

 26

Object Oriented
Technology & Java

would also declare and provide implementations for the instance methods that allow
the driver to change gears, brake, and show the speed, as shown in Figure 5.

Error!
Current Speed

Change
gears

 Current Cadence Brake

Change
cadence

Figure 5: Structure of a “car” Cla

After you’ve created the car class, you can create any num
class. For example, we have created two different objects
shown in Figure 6) from class car. When you create an in
allocates enough memory for the object and all its instan
gets its own copy of all instance variables defined in the c

Current S

Gear Imple

Current Cad

Change cadence

Brake

Change gears

Current G
Your Car

Current S

Gear Imple

Current Cad

Change cadence

Brake

Change gears

Current G My Car

Figure 6: Instance variables of clas

In addition to instance variables, classes can define class
contains information that is shared by all instances of the
suppose that all cars had the same number of gears (18) as
this case, defining an instance variable to hold the number
instance would have its own copy of the variable, but the
every instance. In such situations, you can define a class v
number of gears. All instances share this variable as show
object changes the variable, it changes for all other object
Gear Implementation
Current Gear
ss

ber of car objects from the
Your Car and My Car (as
stance of a class, the system
ce variables. Each instance
lass as shown in Figure 6.

peed =150

mentation

ence = 900

ear = 2

peed =100

mentation

ence = 600

ear = 5

s

variables. A class variable
class. For example,
 shown in Figure 7a. In
 of gears is inefficient; each
value would be the same for
ariable that contains the
n in Figure 7b. If one
s of that class. A class can

 27

Object Oriented
Methodology - 2

also declare class methods. You can invoke a class method directly from the class,
whereas you must invoke instance methods in a particular instance.

Error! Change
gears

Brake

 Change
cadence

Number of Gears = 18

Car

 Figure. 7a: Class

 Change
gears Current Speed =150

 Current Cadence = 900 Brake

 Current Gear = 2 Change cadence

Number of Gears = 18

Your Car
Figure 7b: Instance of a Class

Objects vs. Classes

You probably noticed that the illustrations of objects and classes look very similar.
And indeed, the difference between classes and objects is often the source of some
confusion. In the real world, it’s obvious that classes are not themselves the objects
they describe: A blueprint of a car is not a car. However, it’s a little more difficult to
differentiate classes and objects in software. This is partially because software
objects are merely electronic models of real-world objects or abstract concepts in the
first place. But it’s also because the term “object” is sometimes used to refer to both
classes and instances.

A single object alone is generally not very useful. Instead, an object usually appears
as a component of a larger program or application that contains many other objects.
Through the interaction of these objects, programmers achieve higher-order
functionality and more complex behavior. Your car standing in the garage is just a
product of steel and rubber. By itself the car is incapable of any activity. The car is
useful only when another object (may be you) interacts with it (clutch, accelerator).

Software objects interact and communicate with each other by sending messages to
each other. As shown in Figure 8 when object A wants object B to perform one of
B’s methods, object A sends a message to object B for the same.

 28

Object Oriented
Technology & Java

Error!

Message

Object A

 Object B

Figure 8: Message passing between objects

Sometimes, the receiving object needs more information so that it knows exactly
what to do; for example, when you want to change gears on your car, you have to
indicate which gear you want. This information is passed along with the message as
parameters. The Figure 9 shows the three components that comprise a message:

1. The object to which the message is addressed (Your Car)
2. The name of the method to perform (change Gears)
3. Any parameters needed by the method (lower Gear)

 Change Gears (lowerGear)

Error!

 You

Your Car

Figure 9: Components of message

These three components contain enough information for the receiving object to
perform the desired method. No other information or context is required.
Messages provide two important benefits.

• An object’s behavior is expressed through its methods, so (aside from direct

variable access) message passing supports all possible interactions between
objects.

• Objects don’t need to be in the same process or even on the same machine to
send and receive messages back and forth to each other.

 29

Object Oriented
Methodology - 2

 Check Your Progress 1

1) What is instance variable? Two different objects of same class can have same
value for an instance variable or not?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) How object and class are associated with each other?

……………………………………………………………………………

……………………………………………………………………………

……………………………………………………………………………

3) Why an object can be used in different programs without modification?

……………………………………………………………………………………

……………………………………………………………………………………

2.3 ABSTRACTION AND ENCAPSULATION

“Encapsulation is used as a generic term for techniques, which realize data
abstraction. Encapsulation therefore implies the provision of mechanisms to support
both modularity and information hiding. There is therefore a one-to-one
correspondence in this case between the technique of encapsulation and the principle
of data abstraction” -- [Blair et al, 1991]

The object diagrams show that the object’s variables make up the center, or nucleus,
of the object. Methods surround and hide the object’s nucleus from other objects in
the program. Packaging an object’s variables within the protective custody of its
methods is called encapsulation. This conceptual picture of an object-a nucleus of
variables packaged within a protective membrane of methods-is an ideal
representation of an object and is the ideal that designers of object-oriented systems
strive for.

However, it’s not the whole story. Often, for practical reasons, an object may wish to
expose some of its variables to other objects or hide some of its methods from others.
In the Java programming language, an object can specify one of four access levels for
each of its variables and methods. This feature of Java we will study in Unit 2 of
Block 2 of this course. The access level determines which other objects and classes
can access the variables or methods of object. Encapsulating related variables and
methods into a neat software bundle is a simple yet powerful idea that provides two
primary benefits to software developers:

• Modularity: The source code for an object can be written and maintained

independently of the source code for other objects. Also, an object can be easily
passed around in the system. You can give your car to someone else, and it will
still work.

• Information hiding: An object has a public interface that other objects can use
to communicate with it. The object can maintain private information and
methods that can be changed at any time without affecting the other objects that
depend on it. You don’t need to understand the gear mechanism on your car to
use it.

 30

Object Oriented
Technology & Java

Therefore, a class is a way to bind the data and its associated methods together. It
allows the data (and functions) to be hidden, if necessary, from external use.

Abstraction
“A view of a problem that extracts the essential information relevant to a particular
purpose and ignores the remainder of the information.’’ -- [IEEE, 1983]

Abstraction refers to the act of representing essential features without including the
background details. All programming languages provide abstractions. Assembly
language is a small abstraction of the underlying machine. Procedural languages that
followed (such as FORTRAN, BASIC, and C) were abstractions of assembly
language. These languages are big improvements over assembly language, but their
primary abstraction still requires you to think in terms of the structure of the
computer rather than the structure of the problem you are trying to solve. The
programmer must establish the association between the machine model (in the
“solution space”, which is the place where you’re modeling that problem i.e.
computer) and the model of the problem that is actually being solved (in the “problem
space”, which is a place where the problem exists). A lot of effort is required to
perform this mapping and it produces programs that are difficult to write and
expensive to maintain.

The object-oriented approach provides tools for the programmer to represent
elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. Here we refer to the
elements in the problem space and their representations in the solution space as
“objects”. Object-oriented programming (OOP) allows you to describe the problem
in terms of the problem, rather than in terms of the solution or computer where the
solution will be executed.

Abstract Data
Types: A set of
data values and
associated
operations that are
defined
independent of
any particular
implementation.

In object-oriented approach, classes use the concept of data abstraction. With data
abstraction data structures can be used without having to be concerned about the
exact details of implementation. As in case of built-in data types like integer,
floating point etc. the programmer only knows about the various operations which
can be performed using these data types, but how these operations are carried out by
the hardware or software is hidden from the programmer.

Classes act as abstract data types. Classes are defined as a set of abstract attributes
and functions to operate on these attributes. They encapsulate all the essential
properties of the objects that are to be created.

When defining a class, we are creating a new abstract data type that can be treated
like any other built-in data type. Generally, a class specification has two parts:

i. Class declaration
ii. Class method definition

The class declaration describes the type and scope of its members. The class method
definitions describe how the class functions are implemented. We will study about
them in detail in the later units of this block.

2.4 INHERITANCE

Now, you are conversant with classes, the building blocks of OOP. Now let us deal
with another important concept called inheritance. Inheritance is probably the most
powerful feature of object-oriented programming.

Inheritance is an ability to derive new classes from existing classes. A derived class is
known as subclass which inherits the instance variables and methods of the super

Object Oriented
Methodology - 2

class or base class, and can add some new instance variables and methods. [Katrin
Becker 2002].

Generally speaking, objects are defined in terms of classes. You know a lot about an
object by knowing its class. If I tell you that the object is a bicycle, you can easily tell
that it has two wheels, a handle bar, and pedals.

Object-oriented systems take this a step further and allow classes to be defined in
terms of other classes. For example, mountain bikes, racing bikes, and tandems are
all kinds of bicycles as shown in Figure 10. In OOP, mountain bikes, racing bikes,
and tandems are all subclass (i.e. derived class or child class) of the bicycle class.
Similarly, the bicycle class is the superclass (i.e., base class or parent class) of
mountain bikes, racing bikes, and tandems. This relationship you can see shown in
the Figure 10.

Racing Bike Mountain Bike

Figure 10: Superclass and Subcla

Each subclass inherits state (in the form of variable
Mountain bikes, racing bikes, and tandems share so
Also, each subclass inherits methods from the super
bikes, and tandems share some behaviors: for exam
pedaling speed.

However, subclasses are not limited to the state and
their superclass. Subclasses can add variables and m
from the superclass. Tandem bicycles have two seat
some mountain bikes have an extra set of gears with

Subclasses can also override inherited methods and
implementations for those methods. For example, if
extra set of gears, you would override the change ge
use those new gears.

You are not limited to just one layer of inheritance.
hierarchy can be as deep as needed. Methods and va
the levels. In general, the farther down in the hierar
specialized its behavior. Inheritance may have diffe
Bicycle
31

Tandem Bike

sses

declarations) from the superclass.
me states: cadence, speed, etc.
class. Mountain bikes, racing
ple braking and changing

 behaviors provided to them by
ethods to the ones they inherit
s and two sets of handle bars;
 a lower gear ratio.

 provide specialized
 you had a mountain bike with an
ars method so that the rider could

The inheritance tree, or class
riables are inherited down through

chy a class appears, the more
rent forms as shown in Figure 11:

 32

Object Oriented
Technology & Java

• Single Inheritance (Fig. 11a): In this form, a subclass can have only one super
class.

• Multiple Inheritance (Fig. 11b): This form of inheritance can have several
superclasses.

• Multilevel Inheritance (Fig. 11c): This form has subclasses derived from
another subclass. The example can be grandfather, father and child.

• Hierarchical Inheritance (Fig. 11d): This form has one superclass and many
subclasses. More than one class inherits the traits of one class. For example:
bank accounts.

Figure 11a: Single
Inheritance

Officer

Internal Marks External Marks

Grand Father

Father

Child

B

Employee

Final Result

Figure 11b: Multiple-
Inheritance

Executive Typist

A

Figure 11: Different forms of Inheritance

Figure 11c: Multilevel
Inheritance

Figure 11d: Hierarchical
Inheritance

These forms of inheritance could be used for writing extensible programs. The
direction of arrow indicates the direction of inheritance. For example, in case of single
inheritance, traits of class A are inherited by class B.

 Check Your Progress 2

1) What is data abstraction and why classes are known as abstract data types?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What are the two main benefits provided by encapsulation to software
developers?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) What is inheritance? Differentiate between multilevel and multiple inheritance.

……………………………………………………………………………………

……………………………………………………………………………………

 ……………………………………………………………………………………

 ……………………………………………………………………………………

 33

Object Oriented
Methodology - 2

•

•

Benefits of Inheritance

Subclasses provide specialized behaviors from the basis of common elements
provided by the superclass. Through the use of inheritance, programmers can
reuse the code in the superclass many times. Once a superclass is written and
debugged, it need not be touched again but at the same time can be adapted to
work in different situations. Reusing existing code saves time and money and
increases a program’s reliability.
Programmers can implement superclasses called abstract classes that define
“generic” behaviors. A class for which objects doesn’t exist. Example:
Further class has no object, but its derived classes-chair, table-that have
objects. The abstract superclass defines and may partially implement the
behavior, but much of the abstract class is undefined and unimplemented.
These undefined and unimplemented behaviors fill in the details with
specialized subclasses. Hence, Inheritance can also help in the original
conceptualization of a programming problem, and in the overall design of the
program.

The code reusability helps in case of distributing class libraries. A programmer can
use a class created by another person or company, and, without modifying it, derive
other classes from it that are suited to particular programming situations.

2.5 METHOD OVERRIDING AND
POLYMORPHISM

A significant addition made to the capabilities of functions or methods in OOP is that
of method overloading. With this facility the programmer can have multiple methods
with the same name but their functionality changes according to the situation. Suppose
a programmer wants to have a method for calculating the absolute value of a numeric
argument. Now this argument can be any numeric data type like integer, float etc.
Since the functionality remains the same, there is no need to create many methods
with different names for different numeric data types. The OOP overcomes this
situation by allowing the programmer to create methods with the same name like abs.
This is called function overloading. The compiler will automatically call the required
method depending on the type of the argument.

Similarly operator overloading is one of the most fascinating features of OOP. For
example, consider an addition operation performed by ‘+’ operator. It shows a
different behavior in different instances, i.e. different types of data. For two numbers,
it will generate a sum. Three types may be integer or float.

Let us consider the situation where we want a method to behave in a different manner
than the way it behaves in other classes. In such a case we can use the facility of
method overriding for that specific class. For example, in our earlier example of the
last section, bicycle superclass and subclasses, we have a mountain bike with an extra
set of gears. In that case we would override the “change gears” method of that
subclass (i.e. Mountain Bike) so that the rider could use those new gears.

Polymorphism
After classes and inheritance, polymorphism is the next essential feature of OOP
languages. Polymorphism allows one name to be used for several related but slightly
different purposes. The purpose of polymorphism is to let one name be used to specify
a general class of action. Method overloading is one kind of polymorphism. We have
already dealt with this type of polymorphism. The other type of polymorphism
simplifies the syntax of performing the same operation with the hierarchy of classes.
Thus a programmer can use polymorphism to keep the interface to the classes clean;

 34

Object Oriented
Technology & Java

he doesn’t have to define unique method names for similar operations on each derived
class.

Suppose we have three different classes called rectangle, circle and triangle as
shown in Figure 12. Each class contains a draw method to draw the relevant shape
on the screen. When you call a draw method through a function call, the required
draw will be executed depending on the class, i.e., rectangle, circle or triangle.

Shape

Draw

Draw Circle Draw Triangle Mountain
 Bike

Draw Rectangle Mountain
 Bike

Figure 12: Polymorphism

Thus, Polymorphism plays an important role in allowing objects to have different
internal structures (by method overloading or method overriding) but can share the
same external interface.

 Check Your Progress 3

1) What are the benefits of inheritance?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Differentiate between method overloading and method overriding?

……………………………………………………………………………………

……………………………………………………………………………………

3) Explain message passing with an example.

……………………………………………………………………………………

……………………………………………………………………………………

2.6 SUMMARY

Object oriented programming takes a different approach to solving problems by using
a program model that mirrors the real world problems. It allows you to easily
decompose a problem into subgroups of related parts.

The most important feature of an object-oriented language is the object. An object is
a logical entity containing data and code that manipulates that data. They are the
basic run time entities. A class is a template that defines the variables and the
methods common to all objects of a certain kind. Abstraction consists of focusing on
the essential, inherent aspects of an entity and ignoring its accidental properties.
Classes use the concept of abstraction and are hence known as Abstract data type

 35

Object Oriented
Methodology - 2

(ADT). Encapsulation is the mechanism by which data and methods are bound
together within the object definition. It is the most important feature of a class. The
data is insulated from direct access by the program and it is known as data hiding.
Inheritance is the process by which an object can acquire the properties of another
object in the hierarchy. The concept of inheritance also provides the idea of
reusability. New classes can be built from the existing classes. Most of the OOP
languages support polymorphism. It allows one name to be used for several related
but slightly different purposes. It is available in the form of method or operator
overloading and method overriding. Polymorphism is extensively used in
implementing inheritance.

2.7 SOLUTIONS/ANSWERS

Check Your Progress 1

1) Every object in the world has its state and behavior. For example, a student
object may have name, programme of study, semester etc. The variables name,
programmes of a study, semester are known as instance variables. The value of
instance variables at a particular time to decide the state of an object.

Instance variables of different objects of the same class may have same value
for example two different student may have same name, but mind it that they
are not same.

2) An object is a software bundle of variables and related methods. Everything that
the software object knows (state) and can do (behavior) is expressed by the
variables and the methods within that object. In object-oriented software, it’s
also possible to have many objects of the same kind that share characteristics.
Therefore, a class is a blueprint, or prototype, that defines the variables and the
methods common to all objects of a certain kind.

3) Objects are instance of a class are combination of variables and methods used to

represent state and behaviour of objects. One the class is defined its object can
be used any where with the properties which are defined for it in class without
modification

Check Your Progress 2
1) With data abstraction, data structures can be used without having to be

concerned about the exact details of implementation. Classes act as abstract data
types as they are defined as a set of abstract attributes and functions to operate
on these attributes. They encapsulate all the essential properties of the objects
that are to be created.

2) Two main benefits of encapsulation are:
a) Modularity: The source code for an object can be written and maintained
independently of the source code for other objects. Also, an object can be easily
passed around in the system.

b) Information hiding: An object has a public interface that other objects can
use to communicate with it. The object can maintain private information and
methods that can be changed at any time without affecting the other objects
that depend on it.

3) Inheritance: It is the feature by which classes can be defined in terms of other
classes. The class which feature is used in defining subclass is known as
superclass. Subclasses are created by inheriting the state of super classes this
can be seen as reasonability.

 36

Object Oriented
Technology & Java

Inheritance is seen as generalization to specialization. In multiple inheritance attempt
is made to define a specialized feature class which inherit the features of multiple
classes simultaneously.

In multi level inheritence specialization is achieved step by step and the last class is
the hierarchy is most specialized.

Check Your Progress 3

1) Inheritance offers the following benefits:

a) Subclasses provide specialized behaviors from the basis of common
elements provided by the superclass. Through the use of inheritance,
programmers can reuse the code in the superclass many times. Once a
superclass is written and debugged, it need not be touched again but at
the same time can be adapted to work in different situations. Reusing
existing code saves time and money and increases a program’s
reliability.

b) Programmers can implement superclasses called abstract classes that
define “generic” behaviors. The abstract superclass defines and may
partially implement the behavior, but much of the class is undefined and
unimplemented. Other programmers fill in the details with specialized
subclasses. Hence, Inheritance can also help in the original
conceptualization of a programming problem, and in the overall design
of the program.

2) With method overloading, programmer can have multiple methods with the

same name but their functionality changes according to the situations. Whereas
method overriding is used in the situation where we want a method with the
same name to behave in a different manner in different classes in the hierarchy.

3) Message Passing – Object communicate with each other by message passing

when object A want to get some information from object B then A pass a
message to object B, and object B in turn give the information.

 Let us take one example, when student want to get certain information from
office file. In this situation three objects student, clerk, and office will come in
picture.

 Message 1 Message 3

Student
Object

 Message 2 Message 4

File Object
Clerk Object

Figure 13: Message Passing

	StructurePage Nos.
	
	
	
	Figure 2: A Software Object
	Figure 3: A Car Object

	Class
	In the real world, you often have many objects of the same kind. For example, your car is just one of many cars in the world. In object-oriented terminology, we say that your car object is an instance of the class known as car. Cars have some state (cur
	
	
	
	
	
	
	Figure 6: Instance variables of class

	Figure 9: Components of message

	(Check Your Progress 1
	(Check Your Progress 2

	(Check Your Progress 3

