

27

Inheritance and
Polymorphism UNIT 2 INHERITANCE AND

POLYMORPHISM

Structure Page Nos.

2.0 Introduction 27
2.1 Objectives 27
2.2 Inheritance Basics 27
2.3 Access Control 30
2.4 Multilevel Inheritance 35
2.5 Method Overriding 36
2.6 Abstract Classes 38
2.7 Polymorphism 39
2.8 Final Keyword 41
2.9 Summary 42
2.10 Solutions/Answers 42

2.0 INTRODUCTION

In Object Oriented Programming, one of the major feature is reusability. You are
already introduced to the reusability concept in Unit 2 of Block1 of this course.
Reusability in Java is due to the inheritance. Inheritance describes the ability of one
class or object to possess characteristics and functionality of another class or object in
the hierarchy. Inheritance can be supported as “run-time” or “compile-time” or both.
Here we are discussing inheritance with the Java programming language, and in our
discussion we will generally refer to compile-time inheritance.

In this unit we will discuss importance of inheritance in programming, concept of
superclass and subclass, and access controls in Java programming language. You will
see through example programs how methods are overridden, and how methods of a
super class are accessed by subclass. You will also see how multilevel inheritance is
implemented, use of abstract classes, and demonstration of polymorphism with the
help of example program.

2.1 OBJECTIVES

After going through this unit you will be able to:

• explain the need of inheritance;
• write programs to demonstrate the concept of super class and sub class;
• describe access control in Java;
• explain method overriding and its use in programming;
• incorporate concept of multilevel inheritance in programming, and
• define abstract classes and show use of polymorphism in problem solving.

2.2 INHERITANCE BASICS

Inheritance is a language property specific to the object-oriented paradigm.
Inheritance is used for a unique form of code-sharing by allowing you to take the
implementation of any given class and build a new class based on that
implementation. Let us say class B, starts by inheriting all of the data and operations
defined in the class A. This new subclass can extend the behaviour by adding
additional data and new methods to operate on it. Basically during programming

28

Object Oriented Concepts
and Exceptions Handling

inheritance is used for extending the existing property of a class. In other words it can
be said that inheritance is “from generalization- to-specialization”. In this by using
general class, class with specific properties can be defined.

Now let us take the example of Employee class, which is declared as:
class BankAccount
{
data members
member functions
}
data members and member functions of BankAccount class are used to display
characteristics of Withdraw, Deposit, getBalance of objects of a BankAccount class.

Now suppose you want to define a SavingAccount class. In the SavingAccount class
definitely you will have basic characteristics of a Bankaccount class mentioned above.
In your SavingAccount class you can use the properties of BankAccount class,
without any modification in them. This use of properties of BankAccount class in
Saving Account class is called inheriting property of BankAccount class into
SavingAccount class.

To inherit a class into another class extends keyword is used. For example,
SavingAccount class will inherit BankAccount class as given below.

class SavingAccount extends BankAccount
{
data members
ember functions
}
In this example, SavingAccount declares that it inherits or “extends” BankAccount.

Now let us see what is superclass and subclass.

Superclass and Subclass

The superclass of a class A is the class from which class A is derived. In programming
languages like C++, allow deriving a class from multiple classes at a time. When a
class inherits from multiple super classes, the concepts is known as multiple
inheritance. Java doesn’t support multiple inheritance. If there is a need to implement
multiple inheritance. It is realized by using interfaces. You will study about Interfaces
in Unit 4 of this Block.

A class derived from the superclass is called the subclass. Sometime-superclass is also
called parent class or base class and subclass is called as child class or derived class.
The subclass can reuse the data member and methods of the superclass that were
already implemented and it can also extend or replace the behaviour in the superclass
by overriding methods. Subclass can have its own data members and member
functions.

You can see in this example program, the Employee class is used for tracking the
hours an employ worked for along with the hourly wages, and the “attitude” which
gives you a rough measure of their activeness or for what percentage of time they are
actually productive.

public class Employee
{
protected double attitude;
protected int numHoursPerWeek, wagePerHour;
public Employee(int wage, int hours, double att) // constructor
{

29

Inheritance and
Polymorphism

wagePerHour = wage;
numHoursPerWeek = hours;
attitude = att;
}
public double getProductivity()
{
return numHoursPerWeek*attitude;
}
public double getTeamProductivity()
{
return getProductivity();
}
public int WeekSalary()
{
return wagePerHour*numHoursPerWeek;
}
}

If you look closely you will observe that Employee class possesses the very basic
characteristics of an employee. So think quickly about different type of employees! Of
course you can think about employees with special characteristics, for example,
Manager Engineer, Machine-man etc. You are right Subclass of Employee, will have
properties of Employee class as well as some more properties.

For example, if you take a class Manager (Subclass of Employee class) class. The
Manager is a more specialized kind of Employee. An important point to note is that
Manager represents a relationship with Employee. A Manager is a particular type of
employee, and it has all the properties of Employee class plus some more property
specific to it. Manager overrides the team productivity method to add the work done
by the employees working under him/her and adds some new methods of its own
dealing with other properties, which reflect characteristics of typical Managers. For
example, annoying habits, taking employees under her/him, preparing report for
employees, etc.

public class Manager extends Employee
{
// subclass of Employee
public Manager(int wage, int hours, double att, Employee underling)
{
super(wage, hours, att); // chain to our superclass constructor
 }
public double getTeamProductivity()
{
// Implementation here
}
public int askSalary()
{
 // Implementation here
}
public void addUnderling(Employee anUnderling)
{
// Implementation here
}
public void removeUnderling(Employee anUnderling)
{
// Implementation here
}

30

Object Oriented Concepts
and Exceptions Handling

In the incomplete program above you can see that how inheritance is supporting in
cremental development. Basically in the above program (this program is incomplete,
you can write code to complete it) an attempt has been made to introduce a new code,
without causing bugs in the existing code.

2.3 ACCESS CONTROL

You can see that the terms super, public and protected are used in previous programs.
Can you tell what is the role of these terms in programs? Right, public and protected
are access controller, used to control the access to members (data members and
member functions) of a class, and super is used in implementing inheritance.

Now you can see how access control is used in Java programs.

Controlling Access to Members of a Class

One of the objectives of having access control is that classes can protect their member
data and methods from getting accessed by other objects. Why is this important? Well,
consider this. You’re writing a class that represents a query on a database that contains
all kinds of secret information; say student’s records or marks obtained by a student in
final examination.

In your program you will have certain information and queries contained in the class.
Class will have some publicly accessible methods and variables in your query object,
and you may have some other queries contained in the class simply for the personal
use of the class. These methods support the operation of the class but should not be
used by objects of another type. In other words you can say–you’ve got secret
information to protect.

How can you protect it?

Ok in Java, you can use access specifiers to protect both variables and methods of a
class when you declare them. The Java language supports four distinct access
specifiers for member data and methods: private, protected, public, and if left
unspecified, package.

The following chart shows the access level permitted by each specifier.

Specifier class subclass package world

Private X
Protected X X* X
Public X X X X
Package X X

The first column indicates whether the class itself has access to the members defined
by the access specifier. As you can see, a class always has access to its own members.

The second column indicates whether subclasses of the class (regardless of which
package they are in) have access to the member.

The third column indicates whether classes in the same package as the class
(regardless of their parentage) have access to the member.

The fourth column indicates whether all classes have to the member.

31

Inheritance and
Polymorphism

Note that the protected/subclass intersection has an ‘*’. This particular case has a
special association with inheritance implementation. You will see in the next section
of this unit how protected specifier is used in inheritance. Package will cover in the
next unit of this Block.

 Check Your Progress 1

1) What is the advantage of inheritance? How can a class inherit the properties of

any other class in Java?

……………………………………………………………………………………

……………………………………………………………………………………

2) Explain the need of access specifiers.

……………………………………………………………………………………

……………………………………………………………………………………

3) When is private specifier used in a program?

……………………………………………………………………………………

……………………………………………………………………………………

Let’s look at each access level in more detail.

private

Private is the most restrictive access level. A private member is accessible only to the
class in which it is defined. You should use this access to declare members that you
are going to use within the class only. This includes variables that contain information
if it is accessed by an outsider could put the object in an inconsistent state, or
methods, if invoked by an outsider, could jeopardize the state of the object or the
program in which it is running. You can see private members like secrets you never
tell anybody.

To declare a private member, use the private keyword in its declaration. The following
class contains one private member variable and one private method:
class First
{
private int MyPrivate; // private data member
private void privateMethod() // private member function
{
System.out.println("Inside privateMethod");
}
}
Objects of class First can access or modify the MyPrivate variable and can invoke
privateMethod.Objects of other than class First cannot access or modify MyPrivate
variable and cannot invoke privateMethod . For example, the Second class defined
here:
class Second {
void accessMethod() {
First a = new First();
a. MyPrivate = 51; // illegal
a.privateMethod(); // illegal
}
}

32

Object Oriented Concepts
and Exceptions Handling

cannot access the MyPrivate variable or invoke privateMethod of the object of First.

If you are attempting to access a method to which it does not have access in your
program, you will see a compiler error like this:
Second.java:12: No method matching privateMethod()
found in class First.
a.privateMethod(); // illegal
1 error

One very interesting question can be asked, “whether one object of class First can
access the private members of another object of class First”. The answer to this
question is given by the following example. Suppose the First class contained an
instance method that compared the current First object (this) to another object based
on their iamprivate variables:

class Alpha
{
private int MyPrivate;
boolean isEqualTo (First anotherObject)
{
if (this. MyPrivate == anotherobject. MyPrivate)
return true;
else
return false;
}
}

This is perfectly legal. Objects of the same type have access to one another’s private
members. This is because access restrictions apply at the class or type level (all
instances of a class) rather than at the object level.

Now let us discuss protected specifier.

protected

Protected specifiers allows the class itself, subclasses, and all classes in the same
package to access the members. You should use the protected access level for those
data members or member functions of a class, which you can be accessed by
subclasses of that class, but not unrelated classes. You can see protected members as
family secrets–you don’t mind if the whole family knows, and even a few trusted
friends but you wouldn’t want any outsiders to know. A member can be declared
protected using keyword protected.

public class Student
{
protected int age;
public String name;
protected void protectedMethod()
{
System.out.println("protectedMethod");
}
}

You will see the use of protected specifier in programs discussed in next sections of
this block.

public

This is the easiest access specifier. Any class, in any package, can access the public
members of a class’s. Declare public members only if you want to provide access to a

33

Inheritance and
Polymorphism

member by every class. In other words you can say if access to a member by outsider
cannot produce undesirable results the member may be declared public.
To declare a public member, use the keyword public. For example,

public class Account
{
public String name;
protected String Address;
protected int Acc_No;
public void publicMethod()
{
System.out.println("publicMethod");
}
}
class Saving_Account
{
void accessMethod()
{
Account a = new Account();
String MyName;
a.name = MyName; // legal
a.publicMethod(); // legal
}
}

As you can see from the above code snippet, Saving_Account can legally inspect and
modify the name variable in the Account class and can legally invoke publicMethod
also.

Member Access and Inheritance

Now we will discuss uses of super keyword in Java programming.

There are two uses of super keyword.

1. It is used for calling superclass constructor.
2. It is used to access those members of superclass that are hidden by the member

of subclass (How a subclass can hide member of a superclass?).

Can you tell why subclass is called constructor of superclass?

An Object of class is created by call constructor to initialize its data member! Now if
you create an object of a subclass you will call a suitable constructor of that subclass
to initialize its data members. Can you tell how those data members of the parent
class, which subclass is inheriting will be initialized? Therefore, to initialize
superclass (parent class) data member, superclass constructor is called in subclass
constructor.

To call a superclass constructor write super (argument-list) in subclass constructor
and this should be the very first statement in the subclass constructor. This argument
list includes the arguments needed by superclass constructor. Since the constructor
can be overloaded, super () can be called using any form defined by the superclass. In
case of constructor overloading in superclass, which of the constructors will be called
is decided by the number of parameters or the type of parameter passed in super().

Now let us take one example program to show how subclass constructor calls
superclass constructor.

class Student
{

34

Object Oriented Concepts
and Exceptions Handling

String name;
String address;
int age;
Student(String a, String b, int c)
{
name = a;
address = b;
age = c;
}
void display()
{
System.out.println("*** Student Information ***");
Sstem.out.println("Name : "+name+"\n"+"Address:"+address+"\n"+"Age:"+age);
}
}
class PG_Student extends Student
{
int age;
int percentage;
String course;
PG_Student(String a, String b, String c, int d , int e)
{
super(a,b,d);
course = c;
percentage = e;
age = super.age;
}
void display()
{
super.display();
System.out.println("Course:"+course);
}
}
class Test_Student
{
public static void main(String[] args)
{
 Student std1 = new Student("Mr. Amit Kumar" , "B-34/2 Saket J Block",23);
PG_Student pgstd1 = new PG_Student("Mr.Ramjeet ", "241- Near Fast Lane Road
Raipur" ,"MCA", 23, 80);
std1.display();
pgstd1.display();
}
}

Output:
*** Student Information ***
Name : Mr. Amit Kumar
Address:B-34/2 Saket J Block
Age:23
*** Student Information ***
Name : Mr.Ramjeet
Address:241- Near Fast Lane Road Raipur
Age:23
Course:MCA

In the above program PG_Student class is derived from Student class. PG_Student
class constructor has called constructor of Student class. One interesting point to note
in this program is that both Student and PG_Student classes have variable named age.

35

Inheritance and
Polymorphism

When PG_Student class will inherit class Student, member data age of Student class
will be hidden by the member data age of PG_Student class. To access member data
age of Student class in PG_Student class, super.age is used. Whenever any member
of a superclass have the same name of the member of subclass, it has to be accessed
by using super keyword prefix to it.

2.4 MULTILEVEL INHERITANCE

Now let us discuss about multilevel. In program given below it is soon that how
multilevel inheritance is implemented.

Order of Constructor Calling in Multilevel Inheritance

When the object of a subclass is created the constructor of the subclass is called which
in turn calls constructor of its immediate superclass. For example, if we take a case of
multilevel inheritance, where class B inherits from class A. and class C inherits from
class B. You can see the output of the example program given below, which show the
order of constructor calling.

//Program
class A
{
A()
{
System.out.println("Constructor of Class A has been called");
}
}
class B extends A
{
B()
{
super();
System.out.println("Constructor of Class B has been called");
}
}
class C extends B
{
C()
{
super();
System.out.println("Constructor of Class C has been called");
}
}
class Constructor_Call
{
public static void main(String[] args)
{
System.out.println("------Welcome to Constructor call Demo------");
C objc = new C();
}
}

Output:
------Welcome to Constructor call Demo------
Constructor of Class A has been called
Constructor of Class B has been called
Constructor of Class C has been called

36

Object Oriented Concepts
and Exceptions Handling 2.5 METHOD OVERRIDING

You know that a subclass extending the parent class has access to all the non-private
data members and methods its parent class. Most of the time the purpose of inheriting
properties from the parent class and adding new methods is to extend the behaviour of
the parent class. However, sometimes, it is required to modify the behaviour of parent
class. To modify the behaviour of the parent class overriding is used.

Some important points that must be taken care while overriding a method:

i. An overriding method (largely) replaces the method it overrides.
ii. Each method in a parent class can be overridden at most once in any one of the

subclass.
iii. Overriding methods must have exactly the same argument lists, both in type and

in order.
iv. An overriding method must have exactly the same return type as the method it

overrides.
v. Overriding is associated with inheritance.

The following example program shows how member function area () of the class
Figure is overridden in subclasses Rectangle and Square.

class Figure
{
double sidea;
double sideb;
Figure(double a, double b)
{
sidea = a;
sideb = b;
}
Figure(double a)
{
sidea = a;
sideb = a;
}
double area()
{
System.out.println("Area inside figure is Undefined.");
return 0;
}
}
class Rectangle extends Figure
{
Rectangle(double a , double b)
{
super (a, b);
}
double area ()
{
System.out.println("The Area of Rectangle:");
return sidea*sideb;
}
}
class Squre extends Figure
{
Squre(double a)
{

Inheritance and
Polymorphism

super (a);
}
double area()
{
System.out.println("Area of Squre: ");
return sidea*sidea;
}
}
class Area_Overrid
{
public static void main(String[] args)
{
Figure f = new Figure(20.9, 67.9);
Rectangle r = new Rectangle(34.2, 56.3);
Squre s = new Squre(23.1);
System.out.println("***** Welcome to Override Demo ******");
f.area();
System.out.println(" "+r.area());
System.out.println(" "+s.area());
}
}

Output:
***** Welcome to Override Demo ******
Area inside figure is Undefined.
The Area of Rectangle:
 1925.46
Area of Squre:
 533.61

In most of the object oriented programming languages like C++ and Java, a reference
parent class object can be used as reference to the objects of derived classes. In the
above program to show overriding feature object of Figure class can be used as
reference to objects of Rectangle and Square class. Above program with modification(
shown in bold) in Area_Override class will be as :

class Area_Overrid
{
public static void main(String[] args)
{
Figure f = new Figure(20.9, 67.9);
Rectangle r = new Rectangle(34.2, 56.3);
Squre s = new Squre(23.1);
System.out.println("***** Welcome to Override Demo ******");
f.area();
f= r;
System.out.println(" "+f.area());
f = s;
System.out.println(" "+f.area());
}
}

 Check Your Progress 2
 T F 1) State True/False for the following statements:

i. One object can access the private member of the object of the same class.

37

38

Object Oriented Concepts
and Exceptions Handling

ii A subclass cannot call the constructor of its super class.

iii A public variable in a package cannot be accessed from other
 package.

2) Explain the use of super keyword in Java programming.

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………..

3) How is method overriding implemented in Java? Write the advantage of method
overriding.

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………..

2.6 ABSTRACT CLASSES

As seen from the previous examples, when we extending an existing class, we have a
choice whether to redefine the methods of the superclass. Basically a superclass has
common features that are shared by subclasses. In some cases you will find that
superclass cannot have any instance (object) and such of classes are called abstract
classes. Abstract classes usually contain abstract methods. Abstract method is a
method signature (declaration) without implementation. Basically these abstract
methods provide a common interface to different derived classes. Abstract classes are
generally used to provide common interface derived classes. You know a superclass
is more general than its subclass(es). The superclass contains elements and properties
common to all of the subclasses. Often, the superclass will be set up as an abstract
class, which does not allow objects of its prototype to be created. In this case only
objects of the subclass are created. To do this the reserved word abstract is included
(prefixed) in the class definition.

For example, the class given below is an abstract class.

public abstract class Player // class is abstract
{
private String name;
public Player(String vname)
{
name=vname;
}
public String getName() // regular method
{
return (name);
}
public abstract void Play();
// abstract method: no implementation
}

Subclasses must provide the method implementation for their particular meaning. If
the method statements is one provided by the superclass, it would require overriding
in each subclass. In case you forget to override, the applied method statements may be
inappropriate.

39

Inheritance and
Polymorphism

Now can you think what to do if you have to force that derived classes must redefine
the methods of superclass?

The answer is very simple Make those methods abstract.

In case attempts are made to create objects of abstract classes, the compiler doesn’t
allow and generates an error message. If you are inheriting in a new class from an
abstract class and you want to create objects of this new class, you must provide
definitions to all the abstract methods in the superclass. If all the abstract methods of
super class are not defined in this new class this class also will become abstract.

Is it possible to have an abstract class without abstract method? Yes, you can have.
Can you think about the use of such abstract classes? These types of classes are
defined in case it doesn’t make any sense to have any abstract methods, in the class
and yet you want to prevent an instance of that class.

Inheritance represent, “is–a” relationship between a subclass and a superclass. In other
words, you can say that every object of a subclass is also a superclass object with
some additional properties. Therefore, the possibility of using a subclass object in
place of a superclass object is always there. This concept is very helpful in
implementing polymorphism.

Now we will discuss polymorphism one of the very important features of object
oriented programming, called polymorphism supported by Java programming
language.

2.7 POLYMORPHISM

Polymorphism is the capability of a method to do different things based on the object
through which it is invoked or object it is acting upon. For example method
find _area will work definitely for Circle object and Triangle object In Java, the type
of actual object always determines method calls; object reference type doesn’t play
any role in it. You have already used two types of polymorphism (overloading and
overriding) in the previous unit and in the current unit of this block. Now we will look
at the third: dynamic method binding. Java uses Dynamic Method Dispatch
mechanism to decide at run time which overridden function will be invoked. Dynamic
Method Dispatch mechanism is important because it is used to implement runtime
polymorphism in Java. Java uses the principle: “a super class object can refer to a
subclass object” to resolve calls to overridden methods at run time.

If a superclass has method that is overridden by its subclasses, then the different
versions of the overridden methods are invoked or executed with the help of a
superclass reference variable.

Assume that three subclasses (Cricket_Player Hockey_Player and Football_Player)
that derive from Player abstract class are defined with each subclass having its own
Play() method.

abstract class Player // class is abstract
{
private String name;
public Player(String nm)
{
name=nm;
}
public String getName() // regular method
{
return (name);

40

Object Oriented Concepts
and Exceptions Handling

}
public abstract void Play();
// abstract method: no implementation
}
class Cricket_Player extends Player
{
Cricket_Player(String var)
{
}
public void Play()
{
System.out.println("Play Cricket:"+getName());
}
}
class Hockey_Player extends Player
{
Hockey_Player(String var)
{
}
public void Play()
{
System.out.println("Play Hockey:"+getName());
}
}
class Football_Player extends Player
{
Football_Player(String var)
{
}
public void Play()
{
System.out.println("Play Football:"+getName());
}
}
public class PolyDemo
{
public static void main(String[] args)
{
Player ref; // set up var for an Playerl
Cricket_Player aCplayer = new Cricket_Player("Sachin"); // makes specific objects
Hockey_Player aHplayer = new Hockey_Player("Dhanaraj");
Football_Player aFplayer = new Football_Player("Bhutia");
// now reference each as an Animal
ref = aCplayer;
ref.Play();
ref = aHplayer;
ref.Play();
ref = aFplayer;
ref.Play();
}
}
Output:
Play Cricket:Sachin
Play Hockey:Dhanaraj
Play Football:Bhutia

Notice that although each method is invoked through ref, which is a reference to
player class (but no player objects exist), the program is able to resolve the correct

41

Inheritance and
Polymorphism

method related to the subclass object at runtime. This is known as dynamic (or late)
method binding.

2.8 FINAL KEYWORD

In Java programming the final key word is used for three purposes:

i. Making constants
ii. Preventing method to be overridden
iii. Preventing a class to be inherited

The final keyword (as discussed in Unit 3 of Block1 of this course) is a way of
marking a variable as "read-only". Its value is set once and then cannot be changed.

For example, if year is declared as
final int year = 2005;

Variable year will be containing value 2005 and cannot take any other value after
words.

The final keyword can also be applied to methods, with similar semantics: i.e. the
definition will not change. You cannot override a final method in subclasses, this
means the definition is the “final” one. You should define a method final when you
are concerned that a subclass may accidentally or deliberately redefine the method
(override).

If you want to prevent a class to be inherited, apply the final keyword to an entire
class definition. For example, if you want to prevent class Personal to be inherited
further, define it as follows:

final class Personal
{
// Data members
//Member functions
}
Now if you try to inherit from class Personal

class Sub_Personal extend Personal

It will be illegal. You cannot derive from Personal class since it is a final class.

 Check Your Progress 3

1) Explain the advantage of abstract classes.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Write a program to show polymorphism in Java.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

42

Object Oriented Concepts
and Exceptions Handling

3) What are the different uses of final keyword in Java?

……………………………………………………………………………………

……………………………………………………………………………………

 ……………………………………………………………………………

2.9 SUMMARY

In this unit the concept of inheritance is discussed. It is explained how to derive
classes using extends keyword in Java. To control accessibility of data members three
access specifiers: privatepublic, and protected-are discussed. How to write programs
using concept of inheritance, method overriding, need of abstract classes is also
explained. The concept of polymorphism is explained with the help of a programming
example. In the last section of the unit the use of final keyword in controlling
inheritance is discussed.

2.10 SOLUTIONS/ANSWERS

Check Your Progress 1

1) Inheritance is used for providing reusability of pre-existing codes. For example,

there is an existing class A and you need another class B which has class A
properties as well as some additional properties. In this situation class B may
inherit from class A and there is no need to redefine the properties common to
class A and class B. In Java a class is inherited by any other class using extends
keyword.

2) Access specifiers are used to control the accessibility of data
 members and member functions of class. It helps classes to prevent unwanted
 exposure of members (data and functions) to outside world.

3) If some data members of a class are used in internal operations only and there is

no need to provide access of these members to outside world. Such member
data should be declared private. Similarly, those member functions
Which are used for internal communications/operations only should be declared
private.

Check Your Progress 2
1)

i. True
ii. False
iii. False

2) Java’s super keyword is used for two purposes.

i. To call the constructors of immediate superclass.
ii. To access the members of immediate superclass.

When constructor is defined in any subclass it needs to initialize its superclass
variables. In Java using super() superclass constructor is called super() must be the
first executable statement in subclass constructor. Parameters needed by superclass
constructor are passed in super (parameter_list). The super keyword helps in conflict
resolution in subclasses in the situation of “ when members name in superclass is
same as members name in subclass and the members of the superclass to be called in
subclass”.

43

Inheritance and
Polymorphism

super.member; // member may be either member function or member data

3) Java uses Dynamic Method Dispatch, one of its powerful concepts to implement
method overriding. Dynamic Method Dispatch helps in deciding the version of
the method to be executed. In other words to identify the type of object on
which method is invoked.

Overriding helps in:

• Redefining inherited methods in subclasses. In redefinition declaration
should be identical, code may be different. It is like having another version of
the same product.

• Can be used to add more functionality to a method.
• Sometimes class represent an abstract concept (i.e. abstract class). In this
 case it becomes essential to override methods in derived class of abstract class.

Check Your Progress 3

The advantage of abstract classes.

1) Any abstract class is used to provide a common interface to different classes

derived from it. A common interface gives a feeling (understanding) of
commonness in derived classes. All the derived classes override methods of
abstract class with the same declaration. Abstract class helps to group several
related classes together as subclass, which helps in keeping a program organized
and understandable.

2)

// Program to show polymorphism in Java.
abstract class Account
{
public String Name;
public int Ac_No;
Account(String nm,int an)
{
Name=nm;
Ac_No= an;
}
abstract void getAc_Info();
}
class Saving_Account extends Account
{
private int min_bal;
Saving_Account(String na, int an, int bl)
{
super(na,an);
min_bal= bl;
}
void getAc_Info()
{
System.out.println(Name +"is having Account Number :"+Ac_No);
System.out.println("Minimum Balance in Saving Account :"+Ac_No +"is
Rs:"+min_bal);
}
}
class Current_Account extends Account
{
private int min_bal;
Current_Account(String na, int an, int bl)

44

Object Oriented Concepts
and Exceptions Handling

{
super(na,an);
min_bal= bl;
}
void getAc_Info()
{
System.out.println(Name +"is having Account Number :"+Ac_No);
System.out.println("Minimum Balance in Current Account :"+Ac_No +" is
Rs:"+min_bal);
}
}
public class AccountReference
{
public static void main(String[] args)
{
Account ref; // set up var for an Animal
Saving_Account s = new Saving_Account("M.P.Mishra", 10001,1000);
Current_Account c = new Current_Account("Naveen ", 10005,15000);
ref =s;
ref.getAc_Info();
ref =c;
ref.getAc_Info();
}
}
Output:
M.P.Mishrais having Account Number: 10001
Minimum Balance in Saving Account: 10001 is Rs: 1000
Naveen is having Account Number: 10005
Minimum Balance in Current Account: 10005 is Rs: 15000

3) Final keyword of Java is used for three things:

i. To declare a constant variable.
ii. To prevent a method to be overridden (to declare a method as final).
iii. To prevent a class to be inherited (to declare a class as final).

	UNIT 2INHERITANCE AND POLYMORPHISM
	Controlling Access to Members of a Class
	
	
	protected
	Member Access and Inheritance

	Order of Constructor Calling in Multilevel Inheritance
	(Check Your Progress 2
	ABSTRACT CLASSES
	(Check Your Progress 3
	Check Your Progress 1
	Check Your Progress 2
	Check Your Progress 3

