

25

Graphics and User
Interfaces UNIT 2 GRAPHICS AND USER

INTERFACES

Structure Page Nos.

2.0 Introduction 25
2.1 Objectives 25
2.2 Graphics Contexts and Graphics Objects 26
 2.2.1 Color Control
 2.2.2 Fonts
 2.2.3 Coordinate System
 2.2.3.1 Drawing Lines
 2.2.3.2 Drawing Rectangle
 2.2.3.3 Drawing Ovals and Circles
 2.2.3.4 Drawing Polygons
2.3 User Interface Components 32
2.4 Building User Interface with AWT 33
2.5 Swing-based GUI 38
2.6 Layouts and Layout Manager 39
2.7 Container 45
2.8 Summary 46
2.9 Solutions/Answer 47

2.0 INTRODUCTION

We all wonder that on seeing 2D or 3D movies or graphics, even on the Internet, we
see and admire good animation on various sites. The java technology provides you the
platform to develop these graphics using the Graphics class. In this unit you have to
overview several java capabilities for drawing two-dimensional shapes, colors and
fonts. You will learn to make your own interface, which will be user-interactive and
friendly. These interfaces can be made either using java AWT components or java
SWING components. In this unit you will learn to use some basic components like
button, text field, text area, etc.

Interfaces using GUI allow the user to spend less time trying to remember which
keystroke sequences do what and allow spend more time using the program in a
productive manner. It is very important to learn how you can beautify your
components placed on the canvas area using FONT and COLOR class. For placing
components on different layouts knowing use of various Layout managers is essential.

2.1 OBJECTIVES

Our objective is to give you the concept of making the look and feel attractive. After
going through this unit, you will be able to:

• explain the principles of graphical user interfaces;

• differentiate between AWT and SWING components;

• design a user friendly Interface;

• applying color to interfaces;

• using Font class in programs;

• use the Layout Manager, and

• use Container Classes.

 26

Applets Programming
and Advance Java
Concepts

2.2 GRAPHICS CONTEXTS AND GRAPHICS
OBJECTS

How can you build your own animation using Graphics Class? A Java graphics
context enables drawing on the screen. A Graphics object manages a graphics context
by controlling how objects are drawn. Graphics objects contain methods for drawing,
font manipulation, color manipulation and the other related operations. It has been
developed using the Graphics object g (the argument to the applet’s paint method) to
manage the applet’s graphics context. In other words you can say that Java’s Graphics
is capable of:

• Drawing 2D shapes
• Controlling colors
• Controlling fonts
• Providing Java 2D API
• Using More sophisticated graphics capabilities
• Drawing custom 2D shapes
• Filling shapes with colors and patterns.

Before we begin drawing with Graphics, you must understand Java’s coordinate
system, which is a scheme for identifying every possible point on the screen. Let us
start with Graphics Context and Graphics Class.

Graphics Context and Graphics Class

• Enables drawing on screen
• Graphics object manages graphics context
• Controls how objects is drawn
• Class Graphics is abstract
• Cannot be instantiated
• Contributes to Java’s portability
• Class Component method paint takes Graphics object.

The Graphics class is the abstract base class for all graphics contexts. It allows an
application to draw onto components that are realized on various devices, as well as
on to off-screen images.

Public Abstract Class Graphics Extends Object

You have seen that every applet performs drawing on the screen.
Graphics Objects

In Java all drawing takes place via a Graphics object. This is an instance of the class
java.awt.Graphics.

Initially the Graphics object you use will be passed as an argument to an applet’s
paint() method. The drawing can be done Applet Panels, Frames, Buttons, Canvases
etc.

Each Graphics object has its own coordinate system, and methods for drawing strings,
lines, rectangles, circles, polygons etc. Drawing in Java starts with particular Graphics
object. You get access to the Graphics object through the paint(Graphics g) method of
your applet.

Each draw method call will look like

g.drawString("Hello World", 0, 50);

27

Graphics and User
Interfaces

Where g is the particular Graphics object with which you’re drawing.
For convenience sake in this unit the variable g will always refer to a pre-existing
object of the Graphics class. It is not a rule you are free to use some other name for
the particular Graphics context, such as myGraphics or applet-Graphics or anything
else.

2.2.1 Color Control

It is known that Color enhances the appearance of a program and helps in conveying
meanings. To provide color to your objects use class Color, which defines methods
and constants for manipulation colors. Colors are created from red, green and blue
components RGB values.

All three RGB components can be integers in the range 0 to 255, or floating point
values in the range 0.0 to 1.0

The first part defines the amount of red, the second defines the amount of green and
the third defines the amount of blue. So, if you want to give dark red color to your
graphics you will have to give the first parameter value 255 and two parameter zero.

Some of the most common colors are available by name and their RGB values in
Table 1.

Table 1: Colors and their RGB values

Color Constant Color RGB Values
 Public final static Color ORANGE Orange 255, 200, 0

 Public final static Color PINK Pink 255, 175, 175

 Public final static Color CYAN Cyan 0, 255, 255

 Public final static Color MAGENTA Magenta 255, 0, 255

 Public final static Color YELLOW Yellow 255, 255, 0

 Public final static Color BLACK Black 0, 0, 0

 Public final static Color WHITE White 255, 255, 255

 Public final static Color GRAY Gray 128, 128, 128

 Public final static Color LIGHT_GRAY light gray 192, 192, 192

 Public final static Color DARK_GRAY dark gray 64, 64, 64

 Public final static Color RED Red 255, 0, 0

 Public final static Color GREEN Green 0, 255, 0

 Public final static Color BLUE Blue 0, 0, 255

Color Methods

To apply color in your graphical picture (objects) or text two Color methods get
Color and set Color are provided. Method get Color returns a Color object
representing the current drawing color and method set Color used to sets the current
drawing color.

 28

Applets Programming
and Advance Java
Concepts

Color constructors

public Color(int r, int g, int b): Creates a color based on the values of red, green and
blue components expressed as integers from 0 to 255.

public Color (float r, float g, float b) : Creates a color based the values of on red,
green and blue components expressed as floating-point values from 0.0 to 1.0.

Color methods:

public int getRed(): Returns a value between 0 and 255 representing the red content
public int getGreen(): Returns a value between 0 and 255 representing the green
content
public int getBlue() . Returns a value between 0 and 255 representing the blue content.

Graphics Methods For Manipulating Colors

public Color getColor (): Returns a Color object representing the current color for the
graphics context.
public void setColor (Color c): Sets the current color for drawing with the graphics
context.
As you do with any variable you should preferably give your colors descriptive
names. For instance
Color medGray = new Color(127, 127, 127);
Color cream = new Color(255, 231, 187);
Color lightGreen = new Color(0, 55, 0);

You should note that Color is not a property of a particular rectangle, string or other
object you may draw, rather color is a part of the Graphics object that does the
drawing. You change the color of your Graphics object and everything you draw from
that point forward will be in the new color, at least until you change it again.

When an applet starts running , its color is set to black by default. You can change this
to red by calling g.setColor(Color.red). You can change it back to black by calling
g.setColor(Color.black).

 Check Your Progress 1

1) What are the various color constructors?

……………………………………………………………………………………

……………………………………………………………………………………

2) Write a program to set the Color of a String to red.
……………………………………………………………………………………

……………………………………………………………………………………

3) What is the method to retrieve the color of the text? Write a program to retrieve
R G B values in a given color.

 ……………………………………………………………………………………

……………………………………………………………………………………

Now we will discuss about how different types of fonts can be provided to your
strings.

2.2.2 Fonts

You must have noticed that until now all the applets have used the default font.
However unlike HTML Java allows you to choose your fonts. Java implementations

29

Graphics and User
Interfaces

are guaranteed to have a serif font like Times that can be accessed with the name
"Serif", a monospaced font like courier that can be accessed with the name "Mono”,
and a sans serif font like Helvetica that can be accessed with the name "SansSerif".

How can you know the available fonts on your system for an applet program? You
can list the fonts available on the system by using the getFontList() method from
java.awt.Toolkit. This method returns an array of strings containing the names of the
available fonts. These may or may not be the same as the fonts to installed on your
system. It is implementation is dependent on whether or not all the fonts in a system
are available to the applet.

Choosing a font face is very easy. You just create a new Font object and then call.
setFont(Font f).

To instantiate a Font object the constructor

public Font(String name, int style, int size)

can be used. name is the name of the font family, e.g. "Serif", "SansSerif", or
"Mono".
size is the size of the font in points. In computer graphics a point is considered to be
equal to one pixel. 12 points is a normal size font.

style is an mnemonic constant from java.awt.Font that tells whether the text will be
bold, italics or plain. The three constants are Font.PLAIN, Font.BOLD, and
Font.ITALIC.

In other words, The Class Font contains methods and constants for font control. Font
constructor takes three arguments

Font name Monospaced, SansSerif, Serif, etc.
Font style Font.PLAIN, Font.ITALIC and Font.BOLD
Font size Measured in points (1/72 of inch)

Graphics method for Manipulating Fonts

public Font get Font(): Returns a Font object reference representing the current Font.
public void setFont(Font f): Sets the current font, style and size specified by the Font
object reference f.

2.2.2.1 FontMetrics

Sometimes you will need to know how much space a particular string will occupy.
You can find this out with a FontMetrics object.

FontMetrics allow you to determine the height, width or other useful characteristics of
a particular string, character, or array of characters in a particular font. In Figure 1
you can see a string with some of its basic characteristics.

height

ascent

leading

baseline
descent

Figure 1: String Characteristics

 30

Applets Programming
and Advance Java
Concepts

In order to tell where and whether to wrap a String, you need to measure the string,
not its length in characters, which can be variable in its width, and height in pixels.
Measurements of this sort on strings clearly depend on the font that is used to draw
the string. All other things being equal a 14-point string will be wider than the same
string in 12 or 10-point type.

To measure character and string sizes you need to look at the FontMetrics of the
current font. To get a FontMetrics object for the current Graphics object you use the
java.awt.Graphics.getFontMetrics() method.

java.awt.FontMetrics provide method stringWidth(String s) to return the width of a
string in a particular font, and method getLeading() to get the appropriate line spacing
for the font. There are many more methods in java.awt.FontMetrics that let you
measure the height and width of specific characters as well as ascenders, descenders
and more, but these three methods will be sufficient for basic programs.

 Check Your Progress 2
1) Write a program to set the font of your String as font name as “Arial”,font size

as 12 and font style as FONT.ITALIC.
……………………………………………………………………………………

……………………………………………………………………………………

2) What is the method to retrieve the font of the text? Write a program for font
retrieval.

 ……………………………………………………………………………

……………………………………………………………………………

3) Write a program that will give you the Fontmetrics parameters of a String.
……………………………………………………………………………

……………………………………………………………………………

Knowledge of co-ordinate system is essential to play with positioning of objects in
any drawing. Now you will see how coordinates are used in java drawings.

2.2.3 Coordinate System

By Default the upper left corner of a GUI component (such as applet or window) has
the coordinates (0,0). A Coordinate pair is composed of x-coordinate (the horizontal
coordinate) and a y-coordinate (the vertical coordinate). The x-coordinate is the
horizontal distance moving right from the upper left corner.

The y-coordinate is the vertical distance moving down from the upper left corner. The
x-axis describes every horizontal coordinate, and the y-axis describes every vertical
coordinate. You must note that different display cards have different resolutions (i.e.
the density of pixels varies). Figure 2 represents coordinate system. This may cause
graphics to appear to be different sizes on different monitors.

x
+

) , y (x

(0, 0) X axis

+y

Y axis

Figure 2: Co-ordinate System

31

Graphics and User
Interfaces

Now we will move towards drawing of different objects. In this section, I will
demonstrate drawing in applications.

2.2.3.1 Drawing Lines

Drawing straight lines with Java can be done as follows:
call
g.drawLine(x1,y1,x2,y2)
method, where (x1, y1) and (x2, y2) are the endpoints of your lines and g is the
Graphics object you are drawing with. The following program will result in a line on
the applet.

import java.applet.*;
import java.awt.*;
public class SimpleLine extends Applet
{
 public void paint(Graphics g)
 {
 g.drawLine(10, 20, 30, 40);
} }

Output:

2.2.3.2 Drawing Rectangle

Drawing rectangles is simple. Start with a Graphics object g and call its drawRect()
method:

public void drawRect(int x, int y, int width, int height)

The first argument int is the left hand side of the rectangle, the second is the top of the
rectangle, the third is the width and the fourth is the height. This is in contrast to some
APIs where the four sides of the rectangle are given.

Remember that the upper left hand corner of the applet starts at (0, 0),
not at (1, 1). This means that a 100 by 200 pixel applet includes the points with x
coordinates between 0 and 99, not between 0 and 100. Similarly the y coordinates are
between 0 and 199 inclusive, not 0 and 200.

2.2.3.3 Drawing Ovals and Circles

Java has methods to draw outlined and filled ovals. These methods are called
drawOval() and fillOval() respectively. These two methods are:

public void drawOval(int left, int top, int width, int height)
public void fillOval(int left, int top, int width, int height)

Instead of dimensions of the oval itself, the dimensions of the smallest rectangle,
which can enclose the oval, are specified. The oval is drawn as large as it can be to
touch the rectangle’s edges at their centers. Figure 3 may help you to understand
properly.

 32

Applets Programming
and Advance Java
Concepts

Figure 3: An Oval

The arguments to drawOval() are the same as the arguments to drawRect(). The first
int is the left hand side of the enclosing rectangle, the second is the top of the
enclosing rectangle, the third is the width and the fourth is the height. There is no
special method to draw a circle. Just draw an oval inside a square.

2.2.3.4 Drawing Polygons and Polylines

You have already seen that in Java rectangles are defined by the position of their
upper left hand corner, their height, and their width. However it is implicitly assumed
that there is in fact an upper left hand corner. What’s been assumed so far is that the
sides of the rectangle are parallel to the coordinate axes. You can’t yet handle a
rectangle that has been rotated at an arbitrary angle.

There are some other things you can’t handle either, triangles, stars, rhombuses, kites,
octagons and more. To take care of this broad class of shapes Java has a Polygon
class.

Polygons are defined by their corners. No assumptions are made about them except
that they lie in a 2-D plane. The basic constructor for the Polygon class is

public Polygon(int[] xpoints, int[] ypoints, int npoints)

xpoints is an array that contains the x coordinates of the polygon. ypoints is an array
that contains the y coordinates. Both should have the length npoints. Thus to
construct a right triangle with the right angle on the origin you would type

int[] xpoints = {0, 3, 0};
int[] ypoints = {0, 0, 4};
Polygon myTriangle = new Polygon(xpoints, ypoints, 3);

To draw the polygon you can use java.awt.Graphics’s drawPolygon(Polygon p)
method within your paint() method like this:
g.drawPolygon(myTriangle);
You can pass the arrays and number of points directly to the drawPolygon() method if
you prefer:
g.drawPolygon(xpoints, ypoints, xpoints.length);
There’s also an overloaded fillPolygon() method, you can call this method like
g.fillPolygon(myTriangle);
g.fillPolygon(xpoints, ypoints, xpoints.length());

To simplify user interaction and make data entry easier, Java provides different
controls and interfaces. Now let us see some of the basic user interface components of
Java.

2.3 USER INTERFACE COMPONENTS

Java provides many controls. Controls are components, such as buttons, labels and
text boxes that can be added to containers like frames, panels and applets. The
Java.awt package provides an integrated set of classes to manage user interface
components.

33

Graphics and User
Interfaces

Components are placed on the user interface by adding them to a container. A
container itself is a component. The easiest way to demonstrate interface design is by
using the container you have been working with, i.e., the Applet class. The simplest
form of Java AWT component is the basic User Interface Component. You can create
and add these to your applet without any need to know anything about creating
containers or panels. In fact, your applet, even before you start painting and drawing
and handling events, is an AWT container. Because an applet is a container, you can
put any of AWT components, and (or) other containers, in it.

In the next section of this Unit, you will learn about the basic User Interface
components (controls) like labels, buttons, check boxes, choice menus, and text fields.
You can see in Table 2a, a list of all the Controls in Java AWT and their respective
functions. In Table 2b list of classes for these control are given.

2.4 BUILDING USER INTERFACE WITH AWT

In order to add a control to a container, you need to perform the following two steps:

1. Create an object of the control by passing the required arguments to the
constructor.

2. Add the component (control) to the container.

Table 2a: Controls in Java

CONTROLS FUNCTIONS

 Textbox Accepts single line alphanumeric
 entry.

 TextArea Accepts multiple line alphanumeric
 entry.

 Push button Triggers a sequence of actions.
 Label Displays Text.
 Check box Accepts data that has a yes/no

 value. More than one
 checkbox can be selected.

 Radio button Similar to check box except that it
 allows the user to
 select a single option from a group.

 Combo box Displays a drop-down list for
 single item selection. It
 allows new value to be entered.

 List box Similar to combo box except that it
 allows a user to
 select single or multiple items.
 New values cannot be
 entered.

Table 2b: Classes for Controls

CONTROLS CLASS

 Textbox TextField
 TextArea TextArea
 Push button Button
 Check box CheckBox

 Radio button CheckboxGroup with
 CheckBox

 Combo box Choice
 List box List

 34

Applets Programming
and Advance Java
Concepts

The Button

Let us first start with one of the simplest of UI components: the button. Buttons are
used to trigger events in a GUI environment (we have discussed Event Handling in
detail in the previous Unit: Unit 1 Block 4 of this course). The Button class is used to
create buttons. When you add components to the container, you don’t specify a set of
coordinates that indicate where the components are to be placed. A layout manager in
effect for the container handles the arrangement of components. The default layout for
a container is flow layout (for an applet also default layout will be flow layout). More
about different layouts you will learn in later section of this unit. Now let us write a
simple code to test our button class.

To create a button use, one of the following constructors:

Button() creates a button with no text label.
Button(String) creates a button with the given string as label.

Example Program:
/*
<Applet code= “ButtonTest.class”
Width = 500
Height = 100>
</applet>
*/
import java.awt.*;
import java.applet.Applet;
public class ButtonTest extends Applet
{
Button b1 = new Button (“Play”);
Button b2 = new Button (“Stop”);
public void init(){
add(b1);
add(b2);
}
}

Output:

As you can see this program will place two buttons on the Applet with the caption
Play and Stop.

The Label

Labels are created using the Label class. Labels are basically used to identify the
purpose of other components on a given interface; they cannot be edited directly by
the user. Using a label is much easier than using a drawString() method because

35

Graphics and User
Interfaces

labels are drawn automatically and don’t have to be handled explicitly in the paint()
method. Labels can be laid out according to the layout manager, instead of using [x, y]
coordinates, as in drawString().

To create a Label, use any one of the following constructors:
Label(): creates a label with its string aligned to the left.
Label(String): creates a label initialized with the given string, and aligned left.
Label(String, int): creates a label with specified text and alignment indicated by any
one of the three int arguments. Label.Right, Label.Left and Label.Center.
getText() method is used to indicate the current label’s text setText() method to
change the label’s and text. setFont() method is used to change the label’s font.

The Checkbox

Check Boxes are labeled or unlabeled boxes that can be either “Checked off” or
“Empty”. Typically, they are used to select or deselect an option in a program.

Sometimes Check are nonexclusive, which means that if you have six check boxes in
a container, all the six can either be checked or unchecked at the same time. This
component can be organized into Check Box Group, which is sometimes called radio
buttons. Both kinds of check boxes are created using the Checkbox class. To create a
nonexclusive check box you can use one of the following constructors:
Checkbox() creates an unlabeled checkbox that is not checked.
Checkbox(String) creates an unchecked checkbox with the given label as its string.

After you create a checkbox object, you can use the setState(boolean) method with a
true value as argument for checked checkboxes, and false to get unchecked. Three
checkboxes are created in the example given below, which is an applet to enable you
to select up to three courses at a time.
import java.awt.*;
public class CheckboxTest extends java.applet.Applet
{
Checkbox c1 = new Checkbox (“Java”);
Checkbox c2 = new Checkbox (“XML”);
Checkbox c3 = new Checkbox (“VB”);
public void init(){
add(c1);
add(c2);
add(c3);
 }
}

Output:

The Checkbox group
CheckboxGroup is also called like a radio button or exclusive check boxes. To
organize several Checkboxes into a group so that only one can be selected at a time,

36

Applets Programming
and Advance Java
Concepts

you can create CheckboxGroup object as follows:
CheckboxGroup radio = new CheckboxGroup ();

The CheckboxGroup keeps track of all the check boxes in its group. We have to use
this object as an extra argument to the Checkbox constructor.

Checkbox (String, CheckboxGroup, Boolean) creates a checkbox labeled with the
given string that belongs to the CheckboxGroup indicated in the second argument.
The last argument equals true if box is checked and false otherwise.

The set Current (checkbox) method can be used to make the set of currently selected
check boxes in the group. There is also a get Current () method, which returns the
currently selected checkbox.

The Choice List

Choice List is created from the Choice class. List has components that enable a single
item to be picked from a pull-down list. We encounter this control very often on the
web when filling out forms.
The first step in creating a Choice
You can create a choice object to hold the list, as shown below:

Choice cgender = new Choice();

Items are added to the Choice List by using addItem(String) method the object. The
following code adds two items to the gender choice list.

cgender.addItem(“Female”);
cgender.addItem(“Male”);

After you add the Choice List it is added to the container like any other component
using the add() method.

The following example shows an Applet that contains a list of shopping items in the
store.

import java.awt.*;
Public class ChoiceTest extends java.applet.Applet
{
Choice shoplist = new Choice();

Public void init(){
shoplist.addItem(“Bed And Bath”);
shoplist.addItem(“Furniture”);
shoplist.addItem(“Clothing”);
shoplist.addItem(“Home Appliance”);
shoplist.addItem(“Toys and Accessories”);
add(shoplist);
}

Output:

37

Graphics and User
Interfaces

The choice list class has several methods, which are given in Table 3.

Table 3: Choice List Class Methods

Method Action

 getItem() Returns the string item at the given position (items inside a choice
 begin at 0, just like arrays)

 countItems() Returns the number of items in the menu

getSelectedIndex() Returns the index position of the item that’s selected

getSelectedItem() Returns the currently selected item as a string
select(int) Selects the item at the given position
select(String) Selects the item with the given string

The Text Field

To accept textual data from user, AWT provided two classes, TextField and
TextArea. The TextField handles a single line of text and does not have scrollbars,
whereas the TextArea class handles multiple lines of text. Both the classes are derived
from the TextComponent class. Hence they share many common methods.
TextFields provide an area where you can enter and edit a single line of text. To create
a text field, use one of the following constructors:

TextField(): creates an empty TextField with no specified width.
TextField(int): creates an empty text field with enough width to display the specified
number of characters (this has been depreciated in Java2).
TextField(String): creates a text field initialized with the given string.
TextField(String, int) :creates a text field with specified text and specified width.

For example, the following line creates a text field 25 characters wide with the string
"Brewing Java" as its initial contents:
TextField txtfld = new TextField ("Brewing Java", 25); add(txtfld);

TextField, can use methods like:
setText(): Used to set the text in text field.
getText(): Used to get the text currently contained by text field.
setEditable(): Used to provide control whether the content of text field may be
modified by user or not.
isEditable(): It return true if the text in text filed may be changed and false
otherwise.

Text Area

The TextArea is an editable text field that can handle more than one line of input. Text
areas have horizontal and vertical scrollbars to scroll through the text. Adding a text
area to a container is similar to adding a text field. To create a text area you can use
one of the following constructors:

TextArea(): creates an empty text area with unspecified width and height.
TextArea(int, int): creates an empty text area with indicated number of lines and
specified width in characters.
TextArea(String): creates a text area initialized with the given string.
TextField(String, int, int): creates a text area containing the indicated text and
specified number of lines and width in the characters.
The TextArea, similar to TextField, can use methods like setText(), getText(),
setEditable(), and isEditable().
In addition, there are two more methods like these. The first is the insertText(String,
int) method, used to insert indicated strings at the character index specified by the

 38

Applets Programming
and Advance Java
Concepts

second argument. The next one is replaceText(String, int, int) method, used to replace
text between given integer position specified by second and third argument with the
indicated string.

The basic idea behind the AWT is that a graphical Java program is a set of nested
components, starting from the outermost window all the way down to the smallest UI
component. Components can include things you can actually see on the screen, such
as windows, menu bars, buttons, and text fields, and they can also include containers,
which in turn can contain other components.

Hope you have got a clear picture of Java AWT and its some basic UI components, In
the next section of the Unit we will deal with more advance user interface
components.

2.5 SWING - BASED GUI

You must be thinking that when you can make GUI interface with AWT package then
what is the purpose of learning Swing-based GUI? Actually Swing has lightweight
components and does not write itself to the screen, but redirects it to the component it
builds on. On the other hand AWT are heavyweight and have their own view port,
which sends the output to the screen. Heavyweight components also have their own
z-ordering (look and feel) dependent on the machine on which the program is running.
This is the reason why you can’t combine AWT and Swing in the same container. If
you do, AWT will always be drawn on top of the Swing components.

Another difference is that Swing is pure Java, and therefore platform independent.
Swing looks identically on all platforms, while AWT looks different on different
platforms.

See, basically Swing provides a rich set of GUI components; features include model-
UI separation and a plug able look and feel. Actually you can make your GUI also
with AWT but with Swing you can make it more user-friendly and interactive. Swing
components make programs efficient.

Swing GUI components are packaged into Package javax.swing. In the Java class
hierarchy there is a class
Class Component which contains method paint for drawing Component onscreen
Class Container which is a collection of related components and contains method add
for adding components and Class JComponent which has
Pluggable look and feel for customizing look and feel
Shortcut keys (mnemonics)
Common event-handling capabilities

The Hierarchy is as follows:

 Object----- Component-- Container--- JComponent

In Swings we have classes prefixed with the letter ‘J’ like
JLabel -> Displays single line of read only text

JTextField -> Displays or accepts input in a single line

JTextArea -> Displays or accepts input in multiple lines

JCheckBox ->Gives choices for multiple options
JButton -> Accepts command and does the action

39

Graphics and User
Interfaces

JList - > Gives multiple choices and display for selection
JRadioButton - > Gives choices for multiple option, but can select one at a time.

 Check Your Progress 3

1) Write a program which draws a line, a rectangle, and an oval on the applet.
……………………………………………………………………………………

……………………………………………………………………………………

2) Write a program that draws a color-filled line, a color-filled rectangle, and a
color filled oval on the applet.
……………………………………………………………………………………

……………………………………………………………………………………

3) Write a program to add various checkboxes under the CheckboxGroup

……………………………………………………………………………………

……………………………………………………………………………………
4) Write a program in which the Applet displays a text area that is filled with a

string, when the programs begin running.
……………………………………………………………………………………

……………………………………………………………………………………
5) Describe the features of the Swing components that subclass J Component.
 What are the difference between Swing and AWT?

……………………………………………………………………………………

……………………………………………………………………………………
Now we will discuss about different layouts to represent components in a container.

2.6 LAYOUTS AND LAYOUT MANAGER

When you add a component to an applet or a container, the container uses its layout
manager to decide where to put the component. Different LayoutManager classes use
different rules to place components.

java.awt.LayoutManager is an interface. Five classes in the java packages implement
it:

• FlowLayout
• BorderLayout
• CardLayout
• GridLayout
• GridBagLayout
• plus javax.swing.BoxLayout

FlowLayout

A FlowLayout arranges widgets from left to right until there's no more space left.
Then it begins a row lower and moves from left to right again. Each component in a
FlowLayout gets as much space as it needs and no more.
This is the default LayoutManager for applets and panels. FlowLayout is the default
layout for java.awt.Panel of which java.applet.Applet is a subclasses.
Therefore you don't need to do anything special to create a FlowLayout in an applet.
However you do need to use the following constructors if you want to use a
FlowLayout in a Window.LayoutManagers have constructors like any other class.

 40

Applets Programming
and Advance Java
Concepts

The constructor for a FlowLayout is
public FlowLayout()
Thus to create a new FlowLayout object you write
FlowLayout fl;
fl = new FlowLayout();
As usual this can be shortened to
FlowLayout fl = new FlowLayout();

You tell an applet to use a particular LayoutManager instance by passing the object to
the applet's setLayout() method like this: this.setLayout(fl);

Most of the time setLayout() is called in the init() method. You normally just create
the LayoutManager right inside the call to setLayout() like this

this.setLayout(new FlowLayout());

For example the following applet uses a FlowLayout to position a series of buttons
that mimic the buttons on a tape deck.
import java.applet.*;
import java.awt.*;
public class FlowTest extends Applet {
 public void init() {
 this.setLayout(new FlowLayout());
 this.add(new Button("Add"));
 this.add(new Button("Modify"));
 this.add(new Button("Delete"));
 this.add(new Button("Ok"));
 this.add(new Button("CANCEL"));
 }
}

Output:

You can change the alignment of a FlowLayout in the constructor. Components are
normally centered in an applet. You can make them left or right justified. To do this
just passes one of the defined constants FlowLayout.LEFT, FlowLayout.RIGHT or
FlowLayout.CENTER to the constructor, e.g.
this.setLayout(new FlowLayout(FlowLayout.LEFT));

Another constructor allows you spacing option in FlowLayout:
public FlowLayout(int alignment, int horizontalSpace, int verticalSpace);

For instance to set up a FlowLayout with a ten pixel horizontal gap and a twenty pixel
vertical gap, aligned with the left edge of the panel, you would use the constructor
FlowLayout fl = new FlowLayout(FlowLayout.LEFT, 20, 10);
Buttons arranged according to a center-aligned FlowLayout with a 20 pixel horizontal
spacing and a 10 pixel vertical spacing

41

Graphics and User
Interfaces BorderLayout

A BorderLayout organizes an applet into North, South, East, West and Center
sections. North, South, East and West are the rectangular edges of the applet. They're
continually resized to fit the sizes of the widgets included in them. Center is whatever
is left over in the middle.

A BorderLayout places objects in the North, South, East, West and center of an
applet. You create a new BorderLayout object much like a FlowLayout object, in the
init() method call to setLayout like this:
this.setLayout(new BorderLayout());

There's no centering, left alignment, or right alignment in a BorderLayout. However,
you can add horizontal and vertical gaps between the areas. Here is how you would
add a two pixel horizontal gap and a three pixel vertical gap to a BorderLayout:
this.setLayout(new BorderLayout(2, 3));

To add components to a BorderLayout include the name of the section you wish to
add them to do like done in the program given below.

this.add("South", new Button("Start"));
import java.applet.*;
import java.awt.*;
public class BorderLayouttest extends Applet
{
public void init() {
this.setLayout(new BorderLayout(2, 3));
this.add("South", new Button("Start"));
this.add("North", new Button("Stop"));
this.add("East", new Button("Play"));
this.add("West", new Button("Pause"));
}

}

Card Layout

A CardLayout breaks the applet into a deck of cards, each of which has its own
Layout Manager. Only one card appears on the screen at a time. The user flips
between cards, each of which shows a different set of components. The common
analogy is with HyperCard on the Mac and Tool book on Windows. In Java this might

 42

Applets Programming
and Advance Java
Concepts

be used for a series of data input screens, where more input is needed than will
comfortably fit on a single screen.

Grid Layout

A GridLayout divides an applet into a specified number of rows and columns, which
form a grid of cells, each equally sized and spaced. It is important to note that each is
equally sized and spaced as there is another similar named Layout known as
GridBagLayout .As Components are added to the layout they are placed in the cells,
starting at the upper left hand corner and moving to the right and down the page. Each
component is sized to fit into its cell. This tends to squeeze and stretch components
unnecessarily.

You will find the GridLayout is great for arranging Panels. A GridLayout specifies
the number of rows and columns into which components will be placed. The applet is
broken up into a table of equal sized cells.

GridLayout is useful when you want to place a number of similarly sized objects. It is
great for putting together lists of checkboxes and radio buttons as you did in the
Ingredients applet. GridLayout looks like Figure 3.

 Figure 3: GridLayout Demo

Grid Bag Layout

GridBagLayout is the most precise of the five AWT Layout Managers. It is similar to
the GridLayout, but components do not need to be of the same size. Each component
can occupy one or more cells of the layout. Furthermore, components are not
necessarily placed in the cells beginning at the upper left-hand corner and moving to
the right and down.

In simple applets with just a few components you often need only one layout manager.
In more complicated applets, however, you will often split your applet into panels, lay
out the panels according to a layout manager, and give each panel its own layout
manager that arranges the components inside it.
The GridBagLayout constructor is trivial, GridBagLayout() with no arguments.

GridBagLayout gbl = new GridBagLayout();

Unlike the GridLayout() constructor, this does not say how many rows or columns
there will be. The cells your program refers to determine this. If you put a component
in row 8 and column 2, then Java will make sure there are at least nine rows and three
columns. (Rows and columns start counting at zero.) If you later put a component in
row 10 and column 4, Java will add the necessary extra rows and columns. You may
have a picture in your mind of the finished grid, but Java does not need to know this
when you create a GridBagLayout.

43

Graphics and User
Interfaces

Unlike most other LayoutManagers you should not create a GridBagLayout inside a
cell to setLayout(). You will need access to the GridBagLayout object later in the
applet when you use a GridBagConstraints.

A GridBagConstraints object specifies the location and area of the component's
display area within the container (normally the applet panel) and how the component
is laid out inside its display area. The GridBagConstraints, in conjunction with the
component's minimum size and the preferred size of the component's container,
determines where the display area is placed within the applet.

The GridBagConstraints() constructor is trivial

GridBagConstraints gbc = new GridBagConstraints();

Your interaction with a GridBagConstraints object takes place through its eleven
fields and fifteen mnemonic constants.

gridx and gridy

The gridx and gridy fields specify the x and y coordinates of the cell at the upper left
of the Component's display area. The upper-left-most cell has coordinates (0, 0). The
mnemonic constant GridBagConstraints.RELATIVE specifies that the Component is
placed immediately to the right of (gridx) or immediately below (gridy) the previous
Component added to this container.

Gridwidth and Gridheight

The gridwidth and gridheight fields specify the number of cells in a row (gridwidth)
or column (gridheight) in the Component's display area. The mnemonic constant
GridBagConstraints.REMAINDER specifies that the Component should use all
remaining cells in its row (for gridwidth) or column (for gridheight). The mnemonic
constant GridBagConstraints.RELATIVE specifies that the Component should fill all
but the last cell in its row (gridwidth) or column (gridheight).

Fill

The GridBagConstraints fill field determines whether and how a component is resized
if the component's display area is larger than the component itself. The mnemonic
constants you use to set this variable are
GridBagConstraints.NONE :Don't resize the component
GridBagConstraints.HORIZONTAL: Make the component wide enough to fill the
display area, but don't change its height.
GridBagConstraints.VERTICAL: Make the component tall enough to fill its display
area, but don't change its width.
GridBagConstraints.BOTH: Resize the component enough to completely fill its
display area both vertically and horizontally.

Ipadx and Ipady

Each component has a minimum width and a minimum height, smaller than which it
will not be. If the component's minimum size is smaller than the component's display
area, then only part of the component will be shown.

The ipadx and ipady fields let you increase this minimum size by padding the edges of
the component with extra pixels. For instance setting ipadx to two will guarantee that
the component is at least four pixels wider than its normal minimum. (ipadx adds two
pixels to each side.)

 44

Applets Programming
and Advance Java
Concepts

Insets

The insets field is an instance of the java.awt.Insets class. It specifies the padding
between the component and the edges of its display area.

Anchor

When a component is smaller than its display area, the anchor field specifies where to
place it in the grid cell. The mnemonic constants you use for this purpose are similar
to those used in a BorderLayout but a little more specific.

They are

GridBagConstraints.CENTER
GridBagConstraints.NORTH
GridBagConstraints.NORTHEAST
GridBagConstraints.EAST
GridBagConstraints.SOUTHEAST
GridBagConstraints.SOUTH
GridBagConstraints.SOUTHWEST
GridBagConstraints.WEST
GridBagConstraints.NORTHWEST
The default is GridBagConstraints.CENTER.

weightx and weighty

The weightx and weighty fields determine how the cells are distributed in the
container when the total size of the cells is less than the size of the container. With
weights of zero (the default) the cells all have the minimum size they need, and
everything clumps together in the center. All the extra space is pushed to the edges of
the container. It doesn't matter where they go and the default of center is fine.
See the program given bellow for visualizing GridbagLayout.

import java.awt.*;
public class GridbagLayouttest extends Frame
{
Button b1,b2,b3,b4,b5;
GridBagLayout gbl=new GridBagLayout();
GridBagConstraints gbc=new GridBagConstraints();
public GridbagLayouttest()
{
setLayout(gbl);
gbc.gridx=0;
gbc.gridy=0;
gbl.setConstraints(b1=new Button("0,0"),gbc);
gbc.gridx=4; //4th column
gbc.gridy=3; //3rd row
gbl.setConstraints(b2=new Button("4,3"),gbc);
gbc.gridx=8; //8th column
gbc.gridy=5; //5rd row
gbl.setConstraints(b3=new Button("8,5"),gbc);
gbc.gridx=10; //10th column
gbc.gridy=3; //3rd row
gbl.setConstraints(b4=new Button("10,3"),gbc);
gbc.gridx=20; //20th column
gbc.gridy=3; //3rd row
gbl.setConstraints(b5=new Button("20,3"),gbc);
add(b1);

45

Graphics and User
Interfaces

add(b2);
add(b3);
add(b4);
add(b5);
setSize(200,200);
setVisible(true);
}
public static void main(String a[])
{
GridbagLayouttest gb= new GridbagLayouttest();
}
}

Output:

Now we will discuss about different containers.

2.7 CONTAINER

You must be thinking that container will be a thing that contains something, like a
bowl. Then you are right!! Actually container object is derived from the
java.awt.Container class and is one of (or inherited from) three primary classes:
java.awt.Window, java.awt.Panel, java.awt.ScrollPane.

The Window class represents a standalone window (either an application window in
the form of a java.awt.Frame, or a dialog box in the form of a java.awt.Dialog).
The java.awt.Panel class is not a standalone window by itself; instead, it acts as a
background container for all other components on a form. For instance, the
java.awt.Applet class is a direct descendant of java.awt.Panel.

The three steps common for all Java GUI applications are:

1. Creation of a container
2. Layout of GUI components.
3. Handling of events.

The Container class contains the setLayout() method so that you can set the default
LayoutManager to be used by your GUI. To actually add components to the container,
you can use the container’s add() method:

Panel p = new java.awt.Panel();
Button b = new java.awt.Button(“OK”);
p.add(b);
A JPanel is a Container, which means that it can contain other components. GUI
design in Java relies on a layered approach where each layer uses an appropriate
layout manager.

 46

Applets Programming
and Advance Java
Concepts

FlowLayout is the default for JPanel objects. To use a different manager use either of
the following:
JPanel pane2 = new JPanel() // make the panel first
pane2.setLayout(new BorderLayout()); // then reset its manager
JPanel pane3 = new JPanel(new BorderLayout()); // all in one!

 Check Your Progress 4

1) Why do you think Layout Manager is important?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) How does repaint() method work with Applet?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Each type of container comes with a default layout manager. Default for a
Frame,Window or Dialog is __________________

4) Give examples of stretchable components and non-stretchable components

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

5) The Listener interfaces inherit directly from which package.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

6) How many Listeners are there for trapping mouse movements.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2.8 SUMMARY

This unit is designed to know about the graphical interfaces in Java. In this unit you
become familiar with AWT and SWING packages, which are used to add components
in the container or a kind of tray. Swings are lightweight components and more
flexible as compared to AWT. You learned to beautify your text by using Font class
and Color class. For Geometric figures various in built classes of Java like for drawing
line, circle, polygons etc are used. You learned to place the components in various

47

Graphics and User
Interfaces

layouts. Java provides various layouts some of which are: FlowLayout,
GridBagLayout, GridLayout, CardLayout, BorderLayout.

2.9 SOLUTONS/ANSWERS

Check Your Progress 1

1) Java defines two constructors for the Color Class of which one constructor takes

three integer arguments and another takes three float arguments.

public Color (int r, int g, int b)

Creates a color based on red, green and blue components expressed as integers
from 0 to 255. Here, the r, g, b means red, green and blue contents respectively.

public Color(float r, float g, float b) Creates a color based on red, green and blue
components expressed as floating-point values from 0.0 to 1.0. Here, the r, g, b
means red, green and blue contents respectively.

2)

import java.awt.*;
import java.applet.Applet;
public class ColorText extends Applet
{
 public void paint(Graphics g)
{
 g.setColor(Color.red);
 g.drawString(“My Red color String”,40,50);

 }
}

Output:

3) If you want to retrieve the Color of a text or a String you can use the method

public int getColor().
It returns a value between 0 and 255 representing the color content.

The Program given bellow is written for getting RGB components of the color
import java.awt. *

import java.applet.Applet;
public class ColorText extends Applet
{
 public void paint(Graphics g)
{
int color;
g.drawString(“My Pink color String”,40,50);

 48

Applets Programming
and Advance Java
Concepts

color = getColor(g);
g.drawString(“The Color of the String is “+color , 40,35);
 }
}

Output:

Check Your Progress 2

1)
import java.applet.*;
import java.awt.*;
public class SimpleLine extends Applet
{
 public void paint(Graphics g)
 {
 g.drawString(“My Font set” , 30, 40);
 g.setFont(“Arial”,Font.ITALIC,15);
 }
}
Output:

49

Graphics and User
Interfaces

2) To retrieve the font of the string the method getFont() is used.

Program for font retrieval:
import java.applet.*;
import java.awt.*;
public class SimpleLine extends Applet
{
public void paint(Graphics g)
{
g.drawString(“My Font set” , 30, 40);
g.setFont(“Arial”,Font.ITALIC,15);
g.drawString(“current Font is “ + g.getFont(),40,50);
g.drawString(g.getFont().getName() + " " + g.getFont().getSize()+” "
+g.getFont().getStyle(), 20, 110);
 }
}

Output:

Note: The getStyle() methodreturns the integer value e.g above value 2 represent

ITALIC.

3)
 import java.awt.*;
 import java.applet.Applet;
 public class Metrics extends Applet {
 public void paint(Graphics g)
 {
 g.drawString(“Hello How are You”,50,60);
 g.setFont(new Font("SansSerif", Font.BOLD, 12));
 FontMetrics metrics = g.getFontMetrics();
 g.drawString("Current font: " + g.getFont(), 10, 40);
 g.drawString("Ascent: " + metrics.getAscent(), 10, 55);
 g.drawString("Descent: " + metrics.getDescent(), 10, 70);
 g.drawString("Height: " + metrics.getHeight(), 10, 85);
 g.drawString("Leading: " + metrics.getLeading(), 10, 100);
 Font font = new Font("Serif", Font.ITALIC, 14);
 metrics = g.getFontMetrics(font);
 g.setFont(font);
 g.drawString("Current font: " + font, 10, 130);
 g.drawString("Ascent: " + metrics.getAscent(), 10, 145);
 g.drawString("Descent: " + metrics.getDescent(), 10, 160);

 50

Applets Programming
and Advance Java
Concepts

 g.drawString("Height: " + metrics.getHeight(), 10, 175);
 g.drawString("Leading: " + metrics.getLeading(), 10, 190);
 } // end method paint
}

Output:

Check Your Progress 3

1)

// Drawing lines, rectangles and ovals.
 import java.awt.*;
 import java.applet.Applet;
 public class LinesRectsOvals extends Applet {
 // display various lines, rectangles and ovals
 public void paint(Graphics g)
 {
 g.drawLine(5, 30, 350, 30);
 g.drawRect(5, 40, 90, 55);
 g.drawOval(195, 100, 90, 55);
 } // end method paint
}

Output:

51

Graphics and User
Interfaces

2)

import java.awt.*;
import javax.swing.*;
 public class LinesRectsOvals extends JFrame
 {
 public void paint(Graphics g)
 {
 g.setColor(Color.GREEN);
 g.drawLine(5, 30, 350, 30);
 g.setColor(Color.BLUE);
 g.drawRect(5, 40, 90, 55);
 g.fillRect(100, 40, 90, 55);
//below two lines will draw a filled rounded rectangle with color yellow
 g.setColor(Color.YELLOW);
 g.fillRoundRect(195, 40, 90, 55, 50, 50);
//below two lines will draw a rounded figure of rectangle with color Pink
 g.drawRoundRect(290, 40, 90, 55, 20, 20);
 g.setColor(Color.PINK);
//below lines will draw an Oval figure with color Magenta
 g.setColor(Color.MAGENTA);
 g.drawOval(195, 100, 90, 55);
 g.fillOval(290, 100, 90, 55);
}
}

Output:

3)

import java.awt.*;
class ChkGroup extends java.applet.Applet
{
CheckboxGroup cbgr = new CheckboxGroup();
Panel panel=new Panel();
Frame fm=new Frame();
Checkbox c1 = new Checkbox ("America Online");
Checkbox c2 = new Checkbox ("MSN");
Checkbox c3 = new Checkbox ("NetZero", cbgr, false);

 52

Applets Programming
and Advance Java
Concepts

Checkbox c4 = new Checkbox ("EarthLink", cbgr, false);
Checkbox c5 = new Checkbox ("Bellsouth DSL", cbgr, false);
public void init()
{
fm.setVisible(true);
fm.setSize(300,400);
fm.add(panel);
panel.add(c1);
panel.add(c2);
panel.add(c3);
panel.add(c4);
panel.add(c5);
}
public static void main(String args[])
{
 ChkGroup ch=new ChkGroup();

ch.init();
}
}

• American Online MSN NetZone EarthLink BellSouth DSL

In the above example you will notice that the control which is not in the group has
become a checkbox and the control which is in the group has become a radio button
because checkbox allows you multiple selection but a radio button allows you a single
selection at a time.

4)

import java.awt.*;
class TextFieldTest extends java.applet.Applet
{
Frame fm=new Frame();
Panel panel=new Panel();
String letter = "Dear Readers: \n" +
"We are learning about Java AWT. \n" +
"Some of you might find it all exciting, while a few are still not very sure \n" +
"For those cat on the wall folks \n" +
"My advice is read it again and practice some codes. \n \n" +
"So brewing a cup of Java? Isn’t so hard as it looked…is it! " ;
TextArea ltArea;
public void init(){
ltArea = new TextArea(letter, 10, 50);
fm.setVisible(true);
fm.setSize(300,400);
fm.add(panel);
panel.add(ltArea);

}
public static void main(String args[])
{
 TextFieldTest tt=new TextFieldTest();
 tt.init();
}
}

53

Graphics and User
Interfaces

Basically you will notice that along with the textarea control you will see the
scrollbars.

5) Swing components that subclass JComponent has many features, including:

A pluggable look and feel that can be used to customize the look and feel when
the program executes on different platforms.

We can have Shortcut keys (called) mnemonics) for direct access to GUI components
through the keyboard. It has very common event handling capabilities for cases where
several GUI components initiate the same actions in the program. It gives the brief
description of a GUI component’s means (tool tips) that are displayed when the mouse
cursor is positioned over the component for a short time. It has a support for
technologies such as Braille screen for blind people. It has support for user interface
localization-customizing the user interface for display in different languages and
cultural conventions.

Check Your Progress 4

1) A LayoutManager rearranges the components in the container based on their

size relative to the size of the container.

Consider the window that just popped up. It has got five buttons of varying
sizes. Resize the window and watch how the buttons move. In particular try
making it just wide enough so that all the buttons fit on one line. Then try
making it narrow and tall so that there is only one button on line. See if you can
manage to cover up some of the buttons. Then uncover them. Note that
whatever you try to do, the order of the buttons is maintained in a logical way.
Button 1 is always before button 2, which is always before button 3 and so on.

It is harder to show, but imagine if the components changed sizes, as they might
if you viewed this page in different browsers or on different platforms with
different fonts.

The layout manager handles all these different cases for you to the greatest
extent possible. If you had used absolute positioning and the window were
smaller than expected or the components larger than you expected, some
components would likely be truncated or completely hidden. In essence a layout
manager defers decisions about positioning until runtime.

 54

Applets Programming
and Advance Java
Concepts

2) The repaint() method will cause AWT to invoke a component’s update()
method. AWT passes a Graphics object to update() –the same one that it passes
to paint(). So, repaint() calls update() which calls paint().

3) BorderLayout

4) Stretchable: Button, Label and TextField

 Non-Stretchable: CheckBox

5) java.awt.event

6) MouseListener and MouseMotionListener

	UNIT 2GRAPHICS AND USER INTERFACES
	StructurePage Nos.
	
	
	
	
	2.2GRAPHICS CONTEXTS AND GRAPHICS OBJECTS

	Graphics Objects
	2.2.1Color Control
	
	Table 2b: Classes for Controls
	The Label

	Action

	BorderLayout
	
	
	
	Figure 3: GridLayout Demo

	Check Your Progress 1
	Check Your Progress 3

