

28

Advanced Features of C ++

UNIT 2 TEMPLATES AND STANDARD

TEMPLATE LIBRARY

Structure Page Nos.

2.0 Introduction 28

2.1 Objectives 28
2.2 Class Templates 29

2.3 Function Templates 31

2.4 Use of Templates 34

2.5 The Standard Template Library 35
2.6 Summary 43

2.7 Answers to Check Your Progress 44

2.8 Further Readings 45

2.0 INTRODUCTION

In the previous units, we have discussed about different features and functionalities of

C++ programming language for object oriented programming. C++ being an object

oriented language also supports reuse. Templates are one of the most prominent

examples of reuse concept in action. This feature has been added to the C++ design
recently. It supports the idea of generic programming by providing facility for

defining generic classes and functions. Thus a template class provides a broad

architecture which can be used to create a number of new classes. Similarly, a
template function can be used to write various versions of the function. This chapter

describes the template mechanism in C++ based on the paper titled „Parameterized

types for C++‟ by Bjarne Stroustup (creator of C++) published in Proceedings of the

USENIX C++ Conference held in Denver, Colorado in October 1988.

This unit aims to explain the basic idea and motivation for templates. The unit

explains in detail (with appropriate examples) the design and use of both Class and
Function Templates. It then proceeds further to explain the use of templates and how

they are related to the concepts of overloading and inheritance. We then discuss the

structure and utility of the Standard Template Library in C++. Further, the unit
describes the three core components of the Standard Template Library: containers,

algorithms and iterators. These features are used in many real world application

designs. The unit concludes with a summary of the Template and Standard template

Library framework followed by model answers to assist you in check your progress
exercises.

2.1 OBJECTIVES

At the end of the unit, you should be able to:

 identify the concept of Templates in C++;

 understand the definition and usage of class and function templates;

 write your own class and function templates;

 understand the design of class and function templates with and without

parameters;

 visualize the idea behind design of the Standard Template Library;

 describe the components of the Standard Template Library and understand their

use; and

29

Templates and Standard

Template Library
 appreciate the use of the Standard template Library in real world application

designs.

2.2 CLASS TEMPLATES

You might have got at least an idea from the introduction that templates are like

stencils out of which we trace shapes. Function-template specializations and class-

template specializations are like the separate tracings that all have the same shape, but
could, for example, be drawn in different colours. In other words, a template may be

considered as a kind of macro. When the actual object of that type is to be defined, the

template definition is substituted with required data type. For example, if we define a
template Array of elements, then this same generic definition may be used to create

Array of integers or of characters or float quantities. We need not make a new class

definition every time. We define a generic class with a parameter that s replaced by a

particular data type at the time of actual use of that class. This is the reason template
classes are also known as parameterized classes.

Designing a template class thus involves a simple process of creating a generic class
with an anonymous type. The general syntax for defining a class template is:

template <class T>

class classname
{

………..

……….class specification with anonymous type T
………..

};

For example, consider the following template definition for a Vector class:

template<class T>

class vector

{
 T * v; // the vector is of type T

 int size;

Public:
 vector(int m)

 {

 v = new T [size = m];
 for (int i=0; i<size; i++)

 v[i]=0;

 }

 vector (T * a)
 {

 for(int i=0; i<size; i++)

 v[i] = a[i];
 }

 T operator * (vector &x)

 {
 T sum = 0;

 for(int i=0; i<size; i++)

 sum += this->v[i] *x- v[i];

 return (sum);
 }

};

30

Advanced Features of C ++ This definition creates a template class vector of type T with variables, constructors

and „*‟ operator. This class definition is similar to an ordinary class definition except

that of the use of template<class T> and use of type T inside the class definition. The

template<class T> tells the compiler that it is a template class with parameter T
instead of a normal class definition. The declaration thus creates a parameterized class

with T as the parameter, which can be substituted with any valid data type. This can

be done by a statement of the following form:

 classname <type> objectname(argument list);

For example, following statements create classes of 20 element integer and float

vectors, respectively.

 vector <int> v(20);

 vector <float> v(20);

This task of creating an actual object from a template class is instantiation. Here we
have written only one class definition for class vector but we have been able to create

more than one actual instantiations of the template class vector.

A class template can also be created by using multiple generic data types as

arguments. The general syntax for such definition would be as below:

template <class T1, class T2, …….>
class classname

{

………..
……….class specification with anonymous type T

………..

};

A simple program demonstrating the declaration and use of class templates is given

below. Please note that this program instantiates two objects from the class template

Example. The program first declares a template class Example with two arguments
and then declares a constructor to instantiate the class. The main function creates two

objects test1 and test2 of different types and their values are then displayed using the

function show.

#include <iostream>

template<class T1, class T2>
class Example

{

 T1 x;

 T2 y;
 Public:

 Example(T1 a, T2 b)

 {
 x = a;

 y = b;

 }

 void show ()
 {

 cout << x << “and” << y << “\n”;

 }
};

31

Templates and Standard

Template Library

int main()

{

 Example <float, int> test1 (3.45, 345);
 Example <int, char> test2 (100, „m‟);

 test1.show();

 test2.show();

return(0);
};

The program creates two template classes test1 and test2 using the template class
Example. The test1 class has two parameter values “3.45” and “345”, whereas test2

class has two parameter values “100” and character “m”. For creating test1 object,

arguments are float and integer respectively, whereas in case of test2 object they are

integer and character. The values displayed in invocation of show() function from
main will be “3.45 and 345” for test1 and “100 and m” for test2 object.

2.3 FUNCTION TEMPLATES

Function templates are similar to class templates in the sense that they create a generic

function type. This generic function can then be used to create a family of functions
that may take different arguments. A function template can be defined as follows:

template <class T>

return_type function_name (arguments of type T)
{

………..

……….body of function with argument of type T
………..

};

Function templates are another way of handling overloaded function requirements. If
overloaded functions perform identical operations for different type of data then they

can be more appropriately and conveniently declared as function templates. The

following example demonstrates creation of a function template swap:

The swap() function can now be invoked like any ordinary function. Any call to

swap() with input arguments will exchange the values contained in those arguments.

Hence if a and b are integer variables and p and q are float variables; we may invoke

swap() function as swap(a,b) and swap(p,q), respectively. The same function
definition can be used to swap values of two variables of different types.

As we have discussed earlier, we can define class templates with multiple arguments,
we can also define function templates with multiple arguments. This can be done

through a declaration of the form:

Template <class T>

void swap(T & x, T& y)

{
T temp = x;

x = y;

y = temp:

};

32

Advanced Features of C ++ template <class T1, class T2, ……..>
return_type function_name (arguments of type T1, T2,….)

{

………..
……….body of function

………..

};

The function and class templates can be used to write programs which work correctly

on different types of data. For example, we can write the following program to sort a

list in desired order using function templates swap() and bsort() as shown in the
program below:

 #include <iostream>

template<class T>

void bsort(T a[], int n)

{
 for (int i=0; i<n-1; i++)

 for (int j=n-1; i<j; j--)

 if (a[j] < a[j-1])
 swap(a[j], a[j-1]);

 }

template <class X>

void swap(X &a, X &b)
{

 X temp =a;

 a = b;
 b = temp;

}

int main()

{

 int x[5] = {10,50,30,60,40};
 float y[5] = {3.2, 71.5, 17.3, 45.9, 92.7};

bsort(x,5);
bsort(y,5);

cout << “Sorted X-Array:”;

for (int i=0; i<5; i++)
 cout << x[i] << “ ”;

cout << endl;

cout << “Sorted Y-Array:”;

for (int j=0; j<5; j++)

 cout << y[j] << “ ”;
cout << endl;

return(0);

};

This program uses two function templates swap() and bsort(). The function template

swap() is invoked within the bsort() function and is hence said to be nested in it. This

program can be used to sort different types of lists without the need of modifying the
program. The program will produce following output:

Sorted X-Array: 10 30 40 50 60

33

Templates and Standard

Template Library

Sorted Y-Array: 3.2 17.3 45.9 71.5 92.7

A template function may also be overloaded in a manner similar to other functions. In

fact, function templates and overloading are intimately related. All the function-
template specializations generated from a function template have the same name, so

the compiler uses overloading resolution to invoke the proper function. A function

template can be overloaded in several ways:

a) functions having same name but different parameters

b) providing a non-template functions with the same function name but different

arguments

Whenever, the compiler has to perform the matching process to determine what

function to call, it achieves the overloading resolution as follows:

a) call an ordinary function that has an exact match

b) call a template function that could be created with an exact match
c) try normal overloading resolution to ordinary functions and call the one that

matches.

In case no match is found, the compiler generates an error. In case there are multiple
matches for the function call, the compiler considers the call to be ambiguous and the

compiler generates an error message. It would also be worth mentioning that no

automatic conversions are applied to arguments on the template functions.

 Check Your Progress 1

1) Fill in the blanks:

a) Templates enable us to specify, with a single code segment, an entire range of

related functions called ………………..……………………, or an entire
range of related classes called……………………………….…………. .

b) All function template definitions begin with the

keyword………………………. followed by a list of template parameters to

the function template enclosed in………………………….. ..

c) Class templates are also called …………..…………………. types.

d) The ………………... operator is used with a class template name to tie each

member function definition to the class template‟s scope.

2) State whether following are True or False.

a) A function template can be overloaded by another function template with the
same function name.

b) Template parameter names along template definitions must be unique.

c) Each member function definition outside a class template must begin with a

template header.
d) Keywords typename and class as used with a template type parameter

specifically mean “any user-defined class type.”

3) Write appropriate statements to create a function template printarray that can
display the values contained in array passed as parameter to the function. The

function must be able to accept integer, float and character arrays as arguments.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

34

Advanced Features of C ++ 4) Write appropriate statements to create a template class item that can instantiate

objects of at least following types: item name: shirt, measure: size (expressed as

characters „S‟, „M‟, „L‟ and „X‟) and item name: trouser, measure: size (expressed

as waist size of integers). The template class must also have a template function to
display the details of the items.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2.4 USE OF TEMPLATES

The concept of class templates and function templates derives its motivation from the
principle of reuse. We have seen in earlier sections how templates allow us to create

generic data types and functions that can fit into various situations. Rather than

defining multiple classes and functions, we define a generic type and depending on
the kind of input data it may customize itself. Templates in this sense serve as a

blueprint for defining classes and functions. This not only eliminates code duplication

for handling different data types but also makes the program development easier and
more manageable. In the previous section, we saw an example of program for sorting

that can a sort lists of various types. We present below another example demonstrating

use of templates for solving a quadratic equation:

 #include <iostream>

#include <iomanip>

#include <cmath>

template<class T>

void roots(T a, T b, T c)

{
 T d = b*b - 4*a*c;

 if (d==0)

 {
 cout << “R1 = R2 =” << -b/(2*a) << endl;

 }

 else if (d > 0)

 {
 cout << “Roots are real \n”;

 float R = sqrt (d);

 float R1 = (-b + R) / (2*a);
 float R2 = (-b - R) / (2*a);

 cout << “R1 =” << R1 << “and” ;

 cout << “R2 =” << R2 << endl;
 }

 else

 {

 cout << “Roots are complex \n”;
 float R1 = -b /(2*a);

 float R2 = sqrt (-d) / (2*a);

 cout << “Real part =” << R1 << endl;
 cout << “Imaginary part =” <<R2 <<endl;

 }

 }

int main()

35

Templates and Standard

Template Library
{
 cout << “Integer coefficients \n”;

 roots (1, -5, 6);

 cout << “\n Float coefficients \n”;
 roots (1.5, 3.6, 5.0);

 return(0);

};

The program will generate following output:

Integer coefficients

Roots are real

R1 = 3 and R2 = 2

Float coefficients
Roots are complex

Real part = -1.2

Imaginary part = 1.375985

As we can see, the program above can be used to compute roots of a quadratic

equation having different kinds of coefficients. It calculates roots for an equation

having integer coefficient and for another equation having float coefficients. The
templates have become so popular that now we have a rich library of predefined

templates in C++, known as the Standard Template Library. We will discuss the

contents and use of the standard template library in next section.

2.5 THE STANDARD TEMPLATE LIBRARY

Recognizing that many data structures and algorithms are commonly used, the C++
standards committee added the Standard Template Library (STL) to the C++ standard

library. The STL defines powerful, template-based, reusable components that

implement many common data structures, and algorithms used to process those data
structures. STL is a large collection of generic classes and functions. This large

collection can be grouped at its core into three categories:

 Containers

 Algorithms, and

 Iterators.

These components work in conjunction with each other to provide solution to
complex programming problems. A statement summarising their relationship could be

“Algorithms employ iterators to perform operations stored in containers”. The figure

2.1 further elaborates this relationship:

Figure 2.1 : Relationship between the three STL components

The STL was developed
by Alexander Stepanov

and Meng Lee at

Hewlett-Packard while

pursuing their research in
generic programming,

with significant

contributions from David
Musser.

Container Algorithm 2 Algorithm 1

Algorithm 3

Iterator 3

Object 3

Object 1

Object 2

Iterator 1 Iterator 2

36

Advanced Features of C ++ A container is an object that actually stores data. It is a way data is organized in

memory. The STL containers are implemented by template classes and hence can be

easily customized to hold different types of data. An algorithm is a procedure that is

used to process the data stored in the containers. The STL include many different
kinds of algorithms such as searching, sorting, copying, merging etc. Algorithms are

implemented by template functions. An iterator is an object that works like a pointer.

It is used to point to elements in a container. Iterator value may be incremented or
decremented just like pointers. They play a key role in accessing and manipulating

various data structures.

Containers

Containers are objects that hold data. These container classes are defined as class

templates that can be customized to hold different kinds of data. The Figure 2.2
illustrates the three main types of container classes. The container classes contain

definitions for commonly used data structures such as vector, list, queue, stack, set,

map etc. Each container class also defines a set of functions that can be used to
manipulate its contents. The STL defines a number of containers which can be

grouped into mainly three types: sequence containers, associative containers and

derived containers. The derived containers are sometime also referred to as container

adapters.

Figure 2.2 : Main Container types

The Table 2.1 lists some commonly used container classes available in the STL.

Table 2.1: List of commonly used Container

Container Description Header

File

Iterator

vector

A dynamic array. Allows insertion

and deletions at rear. Permits direct

access.

<vector>
Random
access

list
A bidirectional linear list. Allows

insertion and deletions anywhere.
<list> Bidirectional

stack
A standard stack, Last in First out

operation.
<stack> No iterator

queue
A standard Queue, First in First out

operation.
<queue> No iterator

priority queue
A priority queue, highest priority

element as first out.
<queue> No iterator

deque A double ended queue, allows <deque> Random

Containers

Sequence
containers

Associative
containers

Derived
containers

 vector

 deque

 list

 set

 multiset

 map

 multimap

 stack

 queue

 priority_queue

37

Templates and Standard

Template Library
insertions and deletions at both
ends.

access

set
An associative container for storing

unique sets. Allows fast lookup.
<set> Bidirectional

multiset
An associative container for storing
non-unique sets.

<set> Bidirectional

map
An associative container for storing

unique key-value pairs.
<map> Bidirectional

multimap
An associative container for storing
key-value pairs that may use one-to-

many mapping.

<map> Bidirectional

The sequence containers represent linear data structures such as vectors and linked

lists. The associative containers are non-linear container that typically store elements

in a key-value pair fashion and support fast lookup. The sequence containers and

associative containers are collectively referred to as First Class containers. Stacks and
Queues are actually constrained versions of these first class containers and that is why

often referred to as derived containers or container adapters. They enable a program to

view a sequential container in a constrained manner. Sometimes we also hear about
“near conatiners”, which are similar to first class containers but do not support all

functionalities of first class containers. Bitsets is one such example.

Hence, out of the various container classes listed in the table, vector, list and deque

are sequential containers. Set, multiset, map and multimap are associative containers.

Stack, queue and priority queue are derived containers.

Most STL containers provide similar functionality. Many generic operations, such as

member function size, therefore apply to all containers. A good number of operations

apply on subsets of container classes. Some of the common member functions that
apply to most of container classes are listed in the Table 2.2:

Table 2.2: Some common member functions of Container Classes

Member Functions

default constructor, copy constructor, destructor, empty, insert, size, operator=,

operator>, operator<, operator<=, operator>=, operator==, operator!=, swap

Functions found only in First class containers

max_size, begin, end, rbegin, rend, erase, clear.

Algorithms

Algorithms are functions that are used across a variety of container classes for

processing their contents. As we have just learnt that each container class provides

member functions for its basic operations, but STL further extends this by providing
some standard algorithms for manipulating different containers. The STL contains

approximately seventy standard algorithms to support more extended or complex

operations. Standard algorithms have another advantage that they allow working with
two different types of containers at the same time, unlike container member functions.

The STL implement these algorithms as standalone function templates that can be

customized to work with different kind of containers. Inserting, deleting, searching

and sorting are some of the examples.

Unlike member functions, the algorithms operate on containers indirectly through the

use of iterators. Many algorithms operate on sequences of elements defined by pair of
iterators- one pointing to the first element of the sequence and other pointing to one

38

Advanced Features of C ++ element past the last element. It is also possible to create new algorithms that operate

in a similar fashion to that of STL algorithms. Algorithms often return iterators that

indicate the results of algorithms (for example algorithm find). STL algorithms, based

on the nature of operations they perform, may be categorized into following groups:

 Retrieve or non-modifying sequence algorithms

 Mutating-sequence algorithms

 Sorting Algorithms

 Set Algorithms

 Relational Algorithms

A list of some of these algorithms along with a description of their purpose is given in
the Table 2.3:

Table 2.3: Mutating sequence Algorithm

Mutating-sequence algorithms

copy() Copies a sequence

copy_backward() Copies a sequence from the end

fill() Fills a sequence with a specified value

fill_n() Fills first n elements with a specified value

generate() Replaces all elements with the result of an operation

generate_n() Replaces first n elements with the result of an

operation

iter_swap() Swaps elements pointed to by iterators

random_shuffle() Places elements in random order

Remove() Deletes elements of a specified value

remove_copy() Copies a sequence after removing a specified value

remove_copy_if() Copies a sequence after removing elements

matching a predicate

remove_if() Deletes elements matching matching a predicate

replace() Replaces elements with a specified value

replace_copy() Copies a sequence replacing elements with a given

value

replace_copy_if() Copies a sequence replacing elements matching a
predicate

Non-modifying sequence algorithms

adjacent_find() Finds adjacent pair of objects that are equal

count() Counts occurrence of a value in a sequence

count_if() Counts number of elements that matches a

predicate

equal() True if two ranges are the same

find() Finds first occurrence of a value in a sequence

find_end() Finds last occurrence of a value in a sequence

find_first_of() Finds a value from one sequence in another

find_if() Finds first match of a predicate in a sequence

for_each() Apply an operation to each element

mismatch() Finds first elements for which two sequences differ

search() Finds a subsequence within a sequence

search_n() Finds a sequence of a specified number of similar
elements

39

Templates and Standard

Template Library

Set algorithms

includes() Finds whether a sequence is a subsequence of another

set_difference() Constructs a sequence that is the difference of two

ordered sets

set_intersection() Constructs a sequence that contains the intersection

of ordered sets

set_symmetric_difference() Produces a set which is the symmetric difference

between two ordered sets

set_union Produces sorted union of two ordered sets

Relational algorithms

equal() Finds whether two sequences are the same

lexicographical_compare() Compares alphabetically one sequence with other

max() Gives minimum of two values

max_element() Finds the maximum element within a sequence

min() Gives minimum of two values

min_element() Finds the minimum element within a sequence

Mismatch() Finds the first mismatch between the elements in two
sequence

Iterators

Iterators are used to access container class elements. They are called iterators because

of their use in traversing the elements (from one to another) of a container class. In

this sense they are quite similar to pointers. Iterators hold state information sensitive
to the particular containers on which they operate, thus, iterators are implemented

appropriately for each type of container. Certain iterator operations are uniform across

containers. For example, ++ operation on an iterator moves it to the next element of

the container. If iterator i points to a particular element, then, i++ points to the “next”
element and *I refers to the element pointed by i.

Sorting algorithms

binary_search() Conducts a binary search on an ordered sequence

equal_range() Finds a sub range of elements with a given value

inplace_merge() Merges two consecutive sorted sequences

lower_bound() Finds the first occurrence of a specified value

make_heap() Makes a heap from a sequence

merge() Merges two sorted sequences

nth_element() Puts a specified element in its proper place

partial_sort() Sorts a part of a sequence

partial_sort_copy() Sorts a part of a sequence and then copies

partition() Places elements matching a predicate first

pop_heap() Deletes the top element

push_heap() Adds an element to heap

sort() Sorts a sequence

sort_heap() Sorts a heap

stable_partition() Places elements matching a predicate first matching relative

order

stable_sort() Sorts maintaining order of equal elements

upper_bound() Finds the last occurrence of a specified value

40

Advanced Features of C ++ There are five broad types of iterators supported by the STL. These are listed in Table

2.4:

Table 2.4: Types of Iterators

Iterator Access method Movement I/O Capability

Input Linear Forward only Read only

Output Linear Forward only Write only

Forward Linear Forward only Read/ Write

Bidirectional Linear Forward & Backward Read/ Write

Random Random Forward & Backward Read/ Write

Each type of iterator is used for performing a particular set of functions. The input and

output iterators are used to traverse a container and have functionality limited to this
use. The forward operator also supports input and output and at the same time

retaining its position in the container. The bidirectional iterator provides ability to

move backwards in addition to forward movements. The random access iterator
allows random jumps to a particular location in addition to bidirectional operations.

Examples of use of List and Map containers

Now that we had a look at the organization and different components of the STL, we

will go through some illustrative examples of use of the STL components. Since the

STL is quite big and we can not cover examples on the entire STL, we will see here
one example each of the use of List and Map container classes.

List is a commonly used container class that implements a standard bidirectional
linked list. It supports insertion and deletion operations and can be accessed only in a

sequential manner. The STL class list provides appropriate set of member functions to

manipulate lists. We will see here an example of use of list container class for creating
and processing a list:

#include <iostream>

#include <list>
#include <cstdlib>

using namespace std;

void display(list<int> &lst)
{

 list<int> :: iterator p;

 for (p=lst.begin(); p!=lst.end(); ++p)
 cout << *p << “ ” ;

 cout << “\n”;

}

int main()

{

 list<int> list1; // empty list of zero length
 list<int> list2(5); //empty list of 5 elements

 for (int i=0; i<3; i++)
 list1.push_back(rand()/100);

 list<int> :: iterator p;
 for (p=list2.begin(); p!=list2.end(); ++p)

 *p=rand()/100;

 cout << “list1 \n”;

 display(list1);

41

Templates and Standard

Template Library
 cout << “list2 \n”;
 display(list2);

//Add elements at both the ends of list1
 list1.push_front(100);

 list1.push_back(200);

 //Remove an element at front of list2
 list2.pop_front();

 cout << “now list1 \n”;
 display(list1);

 cout << “now list2 \n”;

 display(list2);

 list<int> listA, listB;

 listA=list1;

 listB=list2;

 //Merging two lists

 list1.merge(list2);
 cout << “Merged unsorted list \n”;

 display(list1);

 //Sorting and Merging

 listA.sort();

 listB.sort();

 listA.merge(listB);
 cout << “Merged sorted list \n”;

 display(listA);

 return(0);

};

The program above creates various lists and performs different operations on them. It
uses member functions like begin(), end(), push_back(), push_front() etc. It also sorts

and merges two lists. The user-defined function display() makes use of iterator to

display the elements of the lists.

Another example that we would consider is that of container class map. As we

discussed earlier a map is a sequence of key:value pairs, where a single value is

associated with each unique key. Its an associative container class. The entries in a
map are specified as:

phone [“ashok”] = 123456;

Here, phone is a map object and the statement associates number 123456 with the key

value “ashok”. The map entries can be manipulated using various member functions
and algorithms. The key operations in a map include operations like add, delete,

modify, sort the entries in map etc. We will have a look at an example of use of map

in the program below:

#include <iostream>

#include <map>

#include <string>
using namespace std;

42

Advanced Features of C ++ typedef map<string, int> phonemap;

int main()

{
 string name;

 int number;

 phonemap phone;

 // Entering key:value pairs in map

 cout << “Enter three sets of name and numbers \n”;

 for (int i=0, i<3; i++)
 {

 cin >> name;

 cin >> number;
 phone[name] = number;

 }

 // inserting a new entry
 phone[“Ramesh”]= 621345;

 //inserting using insert() function
 phone.insert(pair<string, int> (“ajay”, 234432));

 int n = phone.size();

 cout << “\n size of map:” << n;

 // reading the entries in the map using iterator

 cout << “\n List of telephone numbers \n”;

 phonemap::iterator p;
 for (p=phone.begin(); p!=phone.end(); p++)

 cout << (*p).first << “ ” << (*p).second << “\n”;

 cout << “\n”;

 //looking up for an entry

 cout << “Enter name:”;
 cin >> name;

 number = phone[name];

 cout << “Number:” << number << “\n”;

 return(0);

};

This program first creates a map (phone) with three entries read from the keyboard.

Then it moves to insert two new entries using two ways. It then prints the entire map

using iterator. Finally it looks up the value of a given key stored in the map.

Similar to list and map container classes, the other container classes can also be used

as the situation desires. We can use vector container class to create and manipulate
various arrays; stack for handling LIFO memory operations; queue and priority

queues for managing queue operations etc. We can manipulate these data structures

not only by the member functions they contain, but also by using various algorithms

that apply to them. Iterators help and guide the processing of elements contained in
the class. The STL provides a rich set of template declarations along with different

algorithms that are very useful in designing and implementing programming solutions

for different real world problems. It supports and promotes reuse, a key theme of
object oriented programming.

43

Templates and Standard

Template Library
 Check Your Progress 2

1) Fill in the blanks:

 a) The two types of first-class STL containers are sequence containers and

……………………….. containers.

b) The five main iterator types are …………………, ………………..,
………………., …………………., and …………………. .

c) The three STL container adapters are ……………, …………….., and

………………. .
d) STL algorithms operate on container elements indirectly, using

…………………… .

e) The sort algorithm requires a (n) …………………… iterator.

2) State whether following are True or False.

a) The STL makes abundant use of inheritance and virtual functions.

b) An iterator acts like a pointer to an element.
c) STL algorithms can operate on C-like pointer-based arrays.

d) STL algorithms are encapsulated as member functions within each container

class.
e) Container member function end yields the position of the container‟s last

element.

3) For each of the following, write a single statement that performs the indicated
task:

a) Name the member functions that are used to refer to beginning and end of the

list class.

…………………………………………………………………………………

…………………………….……………………..……………………………

…………………………………………………………………………………

b) Name the different type names used to categorize the algorithms.

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

c) What is the purpose of push_back(), push_front(), pop_back() and pop_front()

functions of a list.

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

2.6 SUMMARY

This unit has introduced the basic idea of template classes and functions. Templates

are mechanisms supported by C++ for generic programming. Templates allow us to

generate a family of classes or a family of functions to handle different data types.
Template classes and functions promote reuse and avoid code duplication. The

member functions of a class template are also defined using the parameters of the

class templates.

44

Advanced Features of C ++ C++ now contains a rich set of template classes and functions packaged as a library,

known as the standard template library. The STL consists of three main components:

containers, algorithms, and iterators. Containers are objects that hold data of some

type and are usually grouped into three types: sequential, associative and derived.
Container classes contain a large number of member functions that make manipulating

them simple. In addition to member functions, we also have a large number of

algorithms (such as sorting, searching, copying, and merging) that are used to
manipulate the container classes and perform various operations on them. Iterators,

which are similar to pointers allow manipulation of elements of container classes

indirectly by algorithms.

2.7 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress 1

1. (a) function-template specialization, class-template specialization

(b) template<……….>

(c) parameterized

(d) binary scope resolution

2. (a) True

(b) False, it need not be unique.

(c) True
(d) False, This also allows for a type parameter of a fundamental type

3.

4.

template<class T1, class T2>

 class item

 {
 T1 x;

 T2 y;

 Public:
 item(T1 a, T2 b)

 {

 x = a;

 y = b;
 }

 template<typename T>

void display(T a, T b)
{

 cout << “item name” << a;

 cout << “item measure” << b ;

}

template<typename T>
void printarray(T a[], int n)

{

 for (int i=0; i<n-1; i++)
 cout << a[i] << “ ”;

 }

45

Templates and Standard

Template Library
Check Your Progress 2

1. (a) Associative

(b) input, output, forward, bidirectional and random access

(c) stack, queue, priority queue

(d) iterators
(e) random access

2. (a) False, These are avoided for performance reasons.
(b) True

(c) True

(d) False, STL algorithms are not member functions. They operate indirectly

on container classes through iterators.
(e) False, it actually yields the position just after the end of the container.

3. (a) begin() and end()
(b) non-modifying, mutating, sort, set and relational

 (c) push_bac() – is used to insert an element at the back of a list

 push_front() – is used to insert an element at the front of the list
 pop_back() – deleting an element from the back of the list

 pop_front() – deleting an element from the front of the list

2.8 FURTHER READINGS

1) E. Balaguruswamy, Object Oriented Programming with C++, Tata McGraw Hill,

2010.
2) P. Deitel and H. Deitel, C++: How to Program, PHI, 7

th
 ed, 2010.

3) B. Strousstrup, Programming – Principles and Practices using C++, Addison

Wesley, 2009.
4) B. Stroustrup, “Parameterized types for C++” Proceedings of the USENIX C++

Conference, Denver, Colorado, October 1988.

