

 35

Transactions and
Concurrency
Management

 UNIT 2 TRANSACTIONS AND
CONCURRENCY MANAGEMENT

Structure Page Nos.

2.0 Introduction 35
2.1 Objectives 35
2.2 The Transactions 35
2.3 The Concurrent Transactions 38
2.4 The Locking Protocol 42

2.4.1 Serialisable Schedules
2.4.2 Locks
2.4.3 Two Phase Locking (2PL)

2.5 Deadlock and its Prevention 49
2.6 Optimistic Concurrency Control 51
2.7 Summary 53
2.8 Solutions/ Answers 54

2.0 INTRODUCTION

One of the main advantages of storing data in an integrated repository or a database is
to allow sharing of it among multiple users. Several users access the database or
perform transactions at the same time. What if a user’s transactions try to access a
data item that is being used /modified by another transaction? This unit attempts to
provide details on how concurrent transactions are executed under the control of
DBMS. However, in order to explain the concurrent transactions, first we must
describe the term transaction.

Concurrent execution of user programs is essential for better performance of DBMS,
as concurrent running of several user programs keeps utilizing CPU time efficiently,
since disk accesses are frequent and are relatively slow in case of DBMS. Also, a
user’s program may carry out many operations on the data returned from DB, but
DBMS is only concerned about what data is being read /written from/ into the
database. This unit discusses the issues of concurrent transactions in more detail.

2.1 OBJECTIVES

After going through this unit, you should be able to:

• describe the term CONCURRENCY;
• define the term transaction and concurrent transactions;
• discuss about concurrency control mechanism;
• describe the principles of locking and serialisability, and
• describe concepts of deadlock & its prevention.

2.2 THE TRANSACTIONS

A transaction is defined as the unit of work in a database system. Database systems
that deal with a large number of transactions are also termed as transaction processing
systems.

What is a transaction? Transaction is a unit of data processing. For example, some of
the transactions at a bank may be withdrawal or deposit of money; transfer of money
from A’s account to B’s account etc. A transaction would involve manipulation of one

 36

Structured Query
Language and
Transaction Management

or more data values in a database. Thus, it may require reading and writing of
database value. For example, the withdrawal transactions can be written in pseudo
code as:

Example 1:

; Assume that we are doing this transaction for person
; whose account number is X.

TRANSACTION WITHDRAWAL (withdrawal_amount)
Begin transaction

IF X exist then
READ X.balance
IF X.balance > withdrawal_amount

THEN SUBTRACT withdrawal_amount
 WRITE X.balance
 COMMIT

 ELSE
DISPLAY “TRANSACTION CANNOT BE PROCESSED”

ELSE DISPLAY “ACCOUNT X DOES NOT EXIST”
End transaction;

Another similar example may be transfer of money from Account no x to account
number y. This transaction may be written as:

Example 2:
; transfers transfer_amount from x’s account to y’s account
; assumes x&y both accounts exist

TRANSACTION (x, y, transfer_amount)
Begin transaction

IF X AND Y exist then
READ x.balance
IF x.balance > transfer_amount THEN
 x.balance = x.balance – transfer_amount

READ y.balance
y.balance = y.balance + transfer_amount
COMMIT

ELSE DISPLAY (“BALANCE IN X NOT OK”)
 ROLLBACK

 ELSE DISPLAY (“ACCOUNT X OR Y DOES NOT EXIST”)
End_transaction

Please note the use of two keywords here COMMIT and ROLLBACK. Commit
makes sure that all the changes made by transactions are made permanent.
ROLLBACK terminates the transactions and rejects any change made by the
transaction. Transactions have certain desirable properties. Let us look into those
properties of a transaction.

Properties of a Transaction

A transaction has four basic properties. These are:

• Atomicity

• Consistency

• Isolation or Independence

• Durability or Permanence

 37

Transactions and
Concurrency
Management

Atomicity: It defines a transaction to be a single unit of processing. In other words
either a transaction will be done completely or not at all. In the transaction example 1
& 2 please note that transaction 2 is reading and writing more than one data items, the
atomicity property requires either operations on both the data item be performed or
not at all.

Consistency: This property ensures that a complete transaction execution takes a
database from one consistent state to another consistent state. If a transaction fails
even then the database should come back to a consistent state.

 Transfer Rs. 5,000/- from x to y

x.balance = 10,000/-
y.balance = 20,000/-

x.balance = 5,000/-
y.balance = 25,000/-

Consistent state Consistent state Execution

x.balance = 5,000/-
y.balance = 20,000/-
Inconsistent state

Start of transaction (The database may be in an End of transaction
 inconsistent state during
 execution of the transaction)

Figure 1: A Transaction execution

Isolation or Independence: The isolation property states that the updates of a
transaction should not be visible till they are committed. Isolation guarantees that the
progress of other transactions do not affect the outcome of this transaction. For
example, if another transaction that is a withdrawal transaction which withdraws an
amount of Rs. 5000 from X account is in progress, whether fails or commits, should
not affect the outcome of this transaction. Only the state that has been read by the
transaction last should determine the outcome of this transaction.

Durability: This property necessitates that once a transaction has committed, the
changes made by it be never lost because of subsequent failure. Thus, a transaction is
also a basic unit of recovery. The details of transaction-based recovery are discussed
in the next unit.

A transaction has many states of execution. These states are displayed in Figure 2.

Error!

Execute

Start Commit

Abort/
Rollback

Figure 2: States of transaction execution

A transaction is started as a program. From the start state as the transaction is
scheduled by the CPU it moves to the Execute state, however, in case of any system

 38

Structured Query
Language and
Transaction Management

error at that point it may also be moved into the Abort state. During the execution
transaction changes the data values and database moves to an inconsistent state. On
successful completion of transaction it moves to the Commit state where the durability
feature of transaction ensures that the changes will not be lost. In case of any error the
transaction goes to Rollback state where all the changes made by the transaction are
undone. Thus, after commit or rollback database is back into consistent state. In case a
transaction has been rolled back, it is started as a new transaction. All these states of
the transaction are shown in Figure 2.

2.3 THE CONCURRENT TRANSACTIONS

Almost all the commercial DBMS support multi-user environment. Thus, allowing
multiple transactions to proceed simultaneously. The DBMS must ensure that two or
more transactions do not get into each other's way, i.e., transaction of one user doesn’t
effect the transaction of other or even the transactions issued by the same user should
not get into the way of each other. Please note that concurrency related problem may
occur in databases only if two transactions are contending for the same data item
and at least one of the concurrent transactions wishes to update a data value in
the database. In case, the concurrent transactions only read same data item and no
updates are performed on these values, then it does NOT cause any concurrency
related problem. Now, let us first discuss why you need a mechanism to control
concurrency.

Consider a banking application dealing with checking and saving accounts. A
Banking Transaction T1 for Mr. Sharma moves Rs.100 from his checking account
balance X to his savings account balance Y, using the transaction T1:

Transaction T1:

A: Read X
 Subtract 100
 Write X
B: Read Y
 Add 100
 Write Y

Let us suppose an auditor wants to know the total assets of Mr. Sharma. He executes
the following transaction:

Transaction T2:

 Read X
 Read Y
 Display X+Y

Suppose both of these transactions are issued simultaneously, then the execution of
these instructions can be mixed in many ways. This is also called the Schedule. Let us
define this term in more detail.

A schedule S is defined as the sequential ordering of the operations of the ‘n’
interleaved transactions. A schedule maintains the order of operations within the
individual transaction.

Conflicting Operations in Schedule: Two operations of different transactions
conflict if they access the same data iitteemm AANNDD oonnee ooff tthheemm iiss aa wwrriittee ooppeerraattiioonn..

For example, the two transactions TA and TB as given below, if executed in parallel,
may produce a schedule:

TA TB

 39

Transactions and
Concurrency
Management

READ X
WRITE X

 READ X
WRITE X

SCHEDULE TA TB

READ X READ X
READ X READ X
WRITE X WRITE X
WRITE X WRITE X

One possible schedule for interleaved execution of TA and TB

Let us show you three simple ways of interleaved instruction execution of transactions
T1 and T2. Please note that in the following tables the first column defines the
sequence of instructions that are getting executed, that is the schedule of operations.

a) T2 is executed completely before T1 starts, then sum X+Y will show the
correct assets:

Schedule Transaction T1 Transaction T2 Example

Values
Read X Read X X = 50000
Read Y Read Y Y= 100000
Display X+Y Display X+Y 150000
Read X Read X X = 50000
Subtract 100 Subtract 100 49900
Write X Write X X = 49900
Read Y Read Y Y= 100000
Add 100 Add 100 100100
Write Y Write Y Y= 100100

b) T1 is executed completely before T2 starts, then sum X+Y will still show the

correct assets:

Schedule Transaction T1 Transaction T2 Example
Values

Read X Read X X = 50000
Subtract 100 Subtract 100 49900
Write X Write X X = 49900
Read Y Read Y Y= 100000
Add 100 Add 100 100100
Write Y Write Y Y= 100100
Read X Read X X = 49900
Read Y Read Y Y= 100100
Display X+Y Display X+Y 150000

c) Block A in transaction T1 is executed, followed by complete execution of T2,

followed by the Block B of T1.

Schedule Transaction T1 Transaction T2 Example
Values

Read X Read X X = 50000
Subtract 100 Subtract 100 49900
Write X Write X X = 49900
Read X Read X X = 49900
Read Y Read Y Y= 100000
Display X+Y Display X+Y 149900
Read Y Read Y Y= 100000

 40

Structured Query
Language and
Transaction Management

Add 100 Add 100 100100
Write Y Write Y Y= 100100

In this execution an incorrect value is being displayed. This is because Rs.100
although removed from X, has not been put in Y, and is thus missing. Obviously, if
T1 had been written differently, starting with block B and following up with block A,
even then such an interleaving would have given a different but incorrect result.

Please note that for the given transaction there are many more ways of this interleaved
instruction execution.

Thus, there may be a problem when the transactions T1 and T2 are allowed to execute
in parallel. Let us define the problems of concurrent execution of transaction more
precisely.

Let us assume the following transactions (assuming there will not be errors in data
while execution of transactions)

Transaction T3 and T4: T3 reads the balance of account X and subtracts a withdrawal
amount of Rs. 5000, whereas T4 reads the balance of account X and adds an amount
of Rs. 3000

T3 T4
READ X READ X
SUB 5000 ADD 3000
WRITE X WRITE X

Problems of Concurrent Transactions

1. Lost Updates: Suppose the two transactions T3 and T4 run concurrently and
they happen to be interleaved in the following way (assume the initial value of X as
10000):

Value of X T3 T4
T3 T4

READ X 10000
 READ X 10000
SUB 5000 5000
 ADD 3000 13000
WRITE X 5000
 WRITE X 13000

After the execution of both the transactions the value X is 13000 while the
semantically correct value should be 8000. The problem occurred as the update made
by T3 has been overwritten by T4. The root cause of the problem was the fact that
both the transactions had read the value of X as 10000. Thus one of the two updates
has been lost and we say that a lost update has occurred.

There is one more way in which the lost updates can arise. Consider the following part
of some transactions:

Value of x originally
2000

T5 T6

T5 T6
UPDATE X 3000
 UPDATE X 4000
ROLLBACK 2000

 41

Transactions and
Concurrency
Management

Here T5 & T6 updates the same item X. Thereafter T5 decides to undo its action and
rolls back causing the value of X to go back to the original value that was 2000. In
this case also the update performed by T6 had got lost and a lost update is said to have
occurred.
2. Unrepeatable reads: Suppose T7 reads X twice during its execution. If it did
not update X itself it could be very disturbing to see a different value of X in its next
read. But this could occur if, between the two read operations, another transaction
modifies X.

Assumed value of
X=2000

T7 T8

T7 T8
READ X 2000
 UPDATE X 3000
READ X 3000

Thus, the inconsistent values are read and results of the transaction may be in error.

3. Dirty Reads: T10 reads a value which has been updated by T9. This update has
not been committed and T9 aborts.

Value of x old value =
200

T9 T10

T9 T10
UPDATE X 500
 READ X 500
ROLLBACK 200 ?

Here T10 reads a value that has been updated by transaction T9 that has been aborted.
Thus T10 has read a value that would never exist in the database and hence the
problem. Here the problem is primarily of isolation of transaction.

4. Inconsistent Analysis: The problem as shown with transactions T1 and T2
where two transactions interleave to produce incorrect result during an analysis by
Audit is the example of such a problem. This problem occurs when more than one
data items are being used for analysis, while another transaction has modified some of
those values and some are yet to be modified. Thus, an analysis transaction reads
values from the inconsistent state of the database that results in inconsistent analysis.

Thus, we can conclude that the prime reason of problems of concurrent transactions is
that a transaction reads an inconsistent state of the database that has been created by
other transaction.

But how do we ensure that execution of two or more transactions have not resulted in
a concurrency related problem?

Well one of the commonest techniques used for this purpose is to restrict access to
data items that are being read or written by one transaction and is being written by
another transaction. This technique is called locking. Let us discuss locking in more
detail in the next section.

 Check Your Progress 1
1) What is a transaction? What are its properties? Can a transaction update more

than on data values? Can a transaction write a value without reading it? Give an
example of transaction.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

 42

Structured Query
Language and
Transaction Management

2) What are the problems of concurrent transactions? Can these problems occur in
transactions which do not read the same data values?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) What is a Commit state? Can you rollback after the transaction commits?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2.4 THE LOCKING PROTOCOL

To control concurrency related problems we use locking. A lock is basically a variable
that is associated with a data item in the database. A lock can be placed by a
transaction on a shared resource that it desires to use. When this is done, the data item
is available for the exclusive use for that transaction, i.e., other transactions are locked
out of that data item. When a transaction that has locked a data item does not desire to
use it any more, it should unlock the data item so that other transactions can use it. If a
transaction tries to lock a data item already locked by some other transaction, it cannot
do so and waits for the data item to be unlocked. The component of DBMS that
controls and stores lock information is called the Lock Manager. The locking
mechanism helps us to convert a schedule into a serialisable schedule. We had defined
what a schedule is, but what is a serialisable schedule? Let us discuss about it in more
detail:

22..44..11 SSeerriiaalliissaabbllee SScchheedduulleess

IIff tthhee ooppeerraattiioonnss ooff ttwwoo ttrraannssaaccttiioonnss ccoonnfflliicctt wwiitthh eeaacchh ootthheerr,, hhooww ttoo ddeetteerrmmiinnee tthhaatt nnoo
ccoonnccuurrrreennccyy rreellaatteedd pprroobblleemmss hhaavvee ooccccuurrrreedd?? FFoorr tthhiiss,, sseerriiaalliissaabbiilliittyy tthheeoorryy hhaass bbeeeenn
ddeevveellooppeedd.. SSeerriiaalliissaabbiilliittyy tthheeoorryy aatttteemmppttss ttoo ddeetteerrmmiinnee tthhee ccoorrrreeccttnneessss ooff tthhee
sscchheedduulleess.. TThhee rruullee ooff tthhiiss tthheeoorryy iiss::

““AA sscchheedduullee SS ooff nn ttrraannssaaccttiioonnss iiss sseerriiaalliissaabbllee iiff iitt iiss eeqquuiivvaalleenntt ttoo ssoommee sseerriiaall
sscchheedduullee ooff tthhee ssaammee ‘‘nn’’ ttrraannssaaccttiioonnss””..

AA sseerriiaall sscchheedduullee iiss aa sscchheedduullee iinn wwhhiicchh eeiitthheerr ttrraannssaaccttiioonn TT11 iiss ccoommpplleetteellyy ddoonnee
bbeeffoorree TT22 oorr ttrraannssaaccttiioonn TT22 iiss ccoommpplleetteellyy ddoonnee bbeeffoorree TT11.. FFoorr eexxaammppllee,, tthhee ffoolllloowwiinngg
ffiigguurree sshhoowwss tthhee ttwwoo ppoossssiibbllee sseerriiaall sscchheedduulleess ooff ttrraannssaaccttiioonnss TT11 && TT22..
S

Schedule A: T2 followed by T1 Schedule B: T1 followed by T2
Schedule T1 T2 Schedule T1 T2

Read X Read X Read X Read X
Read Y Read Y Subtract 100 Subtract 100
Display X+Y Display X+Y Write X Write X
Read X Read X Read Y Read Y
Subtract 100 Subtract 100 Add 100 Add 100
Write X Write X Write Y Write Y
Read Y Read Y Read X Read X
Add 100 Add 100 Read Y Read Y
Write Y Write Y Display X+Y Display X+Y

FFiigguurree 33:: SSeerriiaall SScchheedduullee ooff ttwwoo ttrraannssaaccttiioonnss

 Schedule C: An Interleaved Schedule
Schedule T1 T2

Read X Read X
Subtract 100 Subtract 100
Read X Read X

 43

Transactions and
Concurrency
Management

Write X Write X
Read Y Read Y
Read Y Read Y
Add 100 Add 100
Display X+Y Display X+Y
Write Y Write Y

Figure 4: An Interleaved Schedule

Now, we have to figure out whether this interleaved schedule would be performing
read and write in the same order as that of a serial schedule. If it does, then it is
equivalent to a serial schedule, otherwise not. In case it is not equivalent to a serial
schedule, then it may result in problems due to concurrent transactions.

Serialisability

Any schedule that produces the same results as a serial schedule is called a serialisable
schedule. But how can a schedule be determined to be serialisable or not? In other
words, other than giving values to various items in a schedule and checking if the
results obtained are the same as those from a serial schedule, is there an algorithmic
way of determining whether a schedule is serialisable or not?

The basis of the algorithm for serialisability is taken from the notion of a serial
schedule. There are two possible serial schedules in case of two transactions (T1- T2
OR T2 - T1). Similarly, in case of three parallel transactions the number of possible
serial schedules is 3!, that is, 6. These serial schedules can be:

T1-T2-T3 T1-T3-T2 T2-T1-T3
T2-T3-T1 T3-T1-T2 T3-T2-T1

Using the notion of precedence graph, an algorithm can be devised to determine
whether an interleaved schedule is serialisbale or not. In this graph, the transactions of
the schedule are represented as the nodes. This graph also has directed edges. An edge
from the node representing transactions Ti to node Tj means that there exists a
conflicting operation between Ti and Tj and Ti precedes Tj in some conflicting
operations. It has been proved that a serialisable schedule is the one that contains no
cycle in the graph.

Given a graph with no cycles in it, there must be a serial schedule corresponding to it.

The steps of constructing a precedence graph are:

1. Create a node for every transaction in the schedule.
2. Find the precedence relationships in conflicting operations. Conflicting

operations are (read-write) or (write-read) or (write–write) on the same data
item in two different transactions. But how to find them?

2.1 For a transaction Ti which reads an item A, find a transaction Tj that
writes A later in the schedule. If such a transaction is found, draw an
edge from Ti to Tj.

2.2 For a transaction Ti which has written an item A, find a transaction Tj
later in the schedule that reads A. If such a transaction is found, draw
an edge from Ti to Tj.

2.3 For a transaction Ti which has written an item A, find a transaction Tj
that writes A later than Ti. If such a transaction is found, draw an edge
from Ti to Tj.

3. If there is any cycle in the graph, the schedule is not serialisable, otherwise,
find the equivalent serial schedule of the transaction by traversing the
transaction nodes starting with the node that has no input edge.

 44

Structured Query
Language and
Transaction Management

Let us use this algorithm to check whether the schedule as given in Figure 4 is
Serialisable. Figure 5 shows the required graph. Please note as per step 1, we draw the
two nodes for T1 and T2. In the schedule given in Figure 4, please note that the
transaction T2 reads data item X, which is subsequently written by T1, thus there is an
edge from T2 to T1 (clause 2.1). Also, T2 reads data item Y, which is subsequently
written by T1, thus there is an edge from T2 to T1 (clause 2.1). However, that edge
already exists, so we do not need to redo it. Please note that there are no cycles in the
graph, thus, the schedule given in Figure 4 is serialisable. The equivalent serial
schedule (as per step 3) would be T2 followed by T1.

T1 T2

 Figure 5: Test of Serialisability for the Schedule of Figure 4

Please note that the schedule given in part (c) of section 2.3 is not serialsable, because
in that schedule, the two edges that exist between nodes T1 and T2 are:

• T1 writes X which is later read by T2 (clause 2.2), so there exists an edge from T1

to T2.
• T2 reads X which is later written by T1 (clause 2.1), so there exists an edge from

T2 to T1.

Thus the graph for the schedule will be:

T1 T2

 Figure 6: Test of Serialisability for the Schedule (c) of section 2.3

Please note that the graph above has a cycle T1-T2-T1, therefore it is not serialisable.

2.4.2 Locks

Serialisabilty is just a test whether a given interleaved schedule is ok or has a
concurrency related problem. However, it does not ensure that the interleaved
concurrent transactions do not have any concurrency related problem. This can be
done by using locks. So let us discuss about what the different types of locks are, and
then how locking ensures serialsability of executing transactions.

Types of Locks

TThheerree aarree ttwwoo bbaassiicc ttyyppeess ooff lloocckkss::

• Binary lock: This locking mechanism has two states for to a data item: locked
or unlocked

• Multiple-mode locks: In this locking type each data item can be in three states
read locked or shared locked, write locked or exclusive locked or unlocked.

Let us first take an example for binary locking and explain how it solves the
concurrency related problems. Let us reconsider the transactions T1 and T2 for this
purpose; however we will add to required binary locks to them.

 45

Transactions and
Concurrency
Management

Schedule T1 T2
Lock X Lock X
Read X Read X
Subtract 100 Subtract 100
Write X Write X
Unlock X Unlock X
Lock X Lock X
Lock Y Lock Y
Read X Read X
Read Y Read Y
Display X+Y Display X+Y
Unlock X Unlock X
Unlock Y Unlock Y
Lock Y Lock Y
Read Y Read Y
Add 100 Add 100
Write Y Write Y
Unlock Y Unlock Y

Figure 7: An incorrect locking implementation

Does the locking as done above solve the problem of concurrent transactions? No the
same problems still remains. Try working with the old value. Thus, locking should be
done with some logic in order to make sure that locking results in no concurrency
related problem. One such solution is given below:

Schedule T1 T2
Lock X Lock X
Lock Y Lock Y
Read X Read X
Subtract 100 Subtract 100
Write X Write X
Lock X (issued by
T2)

Lock X: denied as T1 holds the lock.
The transaction T2 Waits and T1
continues.

Read Y Read Y
Add 100 Add 100
Write Y Write Y
Unlock X Unlock X
 The lock request of T2 on X can now

be granted it can resumes by locking X
Unlock Y Unlock Y
Lock Y Lock Y
Read X Read X
Read Y Read Y
Display X+Y Display X+Y
Unlock X Unlock X
Unlock Y Unlock Y

Figure 8: A correct but restrictive locking implementation

Thus, the locking as above when you obtain all the locks at the beginning of the
transaction and release them at the end ensures that transactions are executed with no
concurrency related problems. However, such a scheme limits the concurrency. We
will discuss a two-phase locking method in the next subsection that provides sufficient
concurrency. However, let us first discuss multiple mode locks.

 46

Structured Query
Language and
Transaction Management

Multiple-mode locks: It offers two locks: shared locks and exclusive locks. But why
do we need these two locks? There are many transactions in the database system that
never update the data values. These transactions can coexist with other transactions
that update the database. In such a situation multiple reads are allowed on a data item,
so multiple transactions can lock a data item in the shared or read lock. On the other
hand, if a transaction is an updating transaction, that is, it updates the data items, it has
to ensure that no other transaction can access (read or write) those data items that it
wants to update. In this case, the transaction places an exclusive lock on the data
items. Thus, a somewhat higher level of concurrency can be achieved in comparison
to the binary locking scheme.
The properties of shared and exclusive locks are summarised below:

a) Shared lock or Read Lock

• It is requested by a transaction that wants to just read the value of data item.
• A shared lock on a data item does not allow an exclusive lock to be placed but

permits any number of shared locks to be placed on that item.

b) Exclusive lock

• It is requested by a transaction on a data item that it needs to update.
• No other transaction can place either a shared lock or an exclusive lock on a

data item that has been locked in an exclusive mode.

Let us describe the above two modes with the help of an example. We will once again
consider the transactions T1 and T2 but in addition a transaction T11 that finds the
total of accounts Y and Z.

Schedule T1 T2 T11
S_Lock X S_Lock X
S_Lock Y S_Lock Y
Read X Read X
S_Lock Y S_Lock Y
S_Lock Z S_Lock Z
 Read Y
 Read Z
X_Lock X X_Lock X. The exclusive lock request on X is

denied as T2 holds the Read lock. The
transaction T1 Waits.

Read Y Read Y
Display X+Y Display X+Y
Unlock X Unlock X
X_Lock Y X_Lock Y. The previous exclusive lock request

on X is granted as X is unlocked. But the new
exclusive lock request on Y is not granted as Y
is locked by T2 and T11 in read mode. Thus T1
waits till both T2 and T11 will release the read
lock on Y.

Display Y+Z Display Y+Z
Unlock Y Unlock Y
Unlock Y Unlock Y
Unlock Z Unlock Z
Read X Read X
Subtract 100 Subtract 100
Write X Write X
Read Y Read Y
Add 100 Add 100

 47

Transactions and
Concurrency
Management

Write Y Write Y
Unlock X Unlock X
Unlock Y Unlock Y

Figure 9: Example of Locking in multiple-modes

Thus, the locking as above results in a serialisable schedule. Now the question is can
we release locks a bit early and still have no concurrency related problem? Yes, we
can do it if we lock using two-phase locking protocol. This protocol is explained in
the next sub-section.

2.4.3 Two Phase Locking (2PL)

The two-phase locking protocol consists of two phases:

Phase 1: The lock acquisition phase: If a transaction T wants to read an object, it
needs to obtain the S (shared) lock. If T wants to modify an object, it needs
to obtain X (exclusive) lock. No conflicting locks are granted to a
transaction. New locks on items can be acquired but no lock can be
released till all the locks required by the transaction are obtained.

Phase 2: Lock Release Phase: The existing locks can be released in any order but no
new lock can be acquired after a lock has been released. The locks are
held only till they are required.

Normally the locks are obtained by the DBMS. Any legal schedule of transactions that
follows 2 phase locking protocol is guaranteed to be serialisable. The two phase
locking protocol has been proved for it correctness. However, the proof of this
protocol is beyond the scope of this Unit. You can refer to further readings for more
details on this protocol.

There are two types of 2PL:

(1) The Basic 2PL
(2) Strict 2PL

The basic 2PL allows release of lock at any time after all the locks have been
acquired. For example, we can release the locks in schedule of Figure 8, after we
have Read the values of Y and Z in transaction 11, even before the display of the sum.
This will enhance the concurrency level. The basic 2PL is shown graphically in
Figure 10.

Lock acquisition

 Lock release

 Time

 Figure 10: Basic Two Phase Locking

However, this basic 2PL suffers from the problem that it can result into loss of atomic
/ isolation property of transaction as theoretically speaking once a lock is released on a

 48

Structured Query
Language and
Transaction Management

data item it can be modified by another transaction before the first transaction
commits or aborts.

To avoid such a situation we use strict 2PL. The strict 2PL is graphically depicted in
Figure 11. However, the basic disadvantage of strict 2PL is that it restricts
concurrency as it locks the item beyond the time it is needed by a transaction.

Lock acquisition

 Lock release

 Time

Figure 11: Strict Two Phase Locking

Does the 2PL solve all the problems of concurrent transactions? No, the strict 2PL
solves the problem of concurrency and atomicity, however it introduces another
problem: “Deadlock”. Let us discuss this problem in next section.

 Check Your Progress 2

1) Let the transactions T1, T2, T3 be defined to perform the following operations:

T1: Add one to A
T2: Double A
T3: Display A on the screen and set A to one.

Suppose transactions T1, T2, T3 are allowed to execute concurrently. If A has
initial value zero, how many possible correct results are there? Enumerate them.

……………………………………………………………………………………

……………………………………………………………………………………

2) Consider the following two transactions, given two bank accounts having a
balance A and B.

Transaction T1: Transfer Rs. 100 from A to B

Transaction T2: Find the multiple of A and B.

 Create a non-serialisable schedule.

……………………………………………………………………………………

……………………………………………………………………………………

3) Add lock and unlock instructions (exclusive or shared) to transactions T1 and
T2 so that they observe the serialisable schedule. Make a valid schedule.
……………………………………………………………………………………

……………………………………………………………………………………

 49

Transactions and
Concurrency
Management

2.5 DEADLOCK AND ITS PREVENTION

As seen earlier, though 2PL protocol handles the problem of serialisability, but it
causes some problems also. For example, consider the following two transactions and
a schedule involving these transactions:

TA TB
X_lock A X_lock A
X_lock B X_lock B
: :
: :
Unlock A Unlock A
Unlock B Unlock B

Schedule

T1: X_lock A
T2: X_lock B
T1: X_lock B
T2: X_lock A

As is clearly seen, the schedule causes a problem. After T1 has locked A, T2 locks B
and then T1 tries to lock B, but unable to do so waits for T2 to unlock B. Similarly, T2
tries to lock A but finds that it is held by T1 which has not yet unlocked it and thus
waits for T1 to unlock A. At this stage, neither T1 nor T2 can proceed since both of
these transactions are waiting for the other to unlock the locked resource.

Clearly the schedule comes to a halt in its execution. The important thing to be seen
here is that both T1 and T2 follow the 2PL, which guarantees serialisability. So
whenever the above type of situation arises, we say that a deadlock has occurred,
since two transactions are waiting for a condition that will never occur.

Also, the deadlock can be described in terms of a directed graph called a “wait for”
graph, which is maintained by the lock manager of the DBMS. This graph G is
defined by the pair (V, E). It consists of a set of vertices/nodes V is and a set of
edges/arcs E. Each transaction is represented by node and an arc from Ti Tj, if Tj
holds a lock and Ti is waiting for it. When transaction Ti requests a data item
currently being held by transaction Tj then the edge Ti Tj is inserted in the "wait
for" graph. This edge is removed only when transaction Tjj is no longer holding the
data item needed by transaction Ti.

A deadlock in the system of transactions occurs, if and only if the wait-for graph
contains a cycle. Each transaction involved in the cycle is said to be deadlocked.
To detect deadlocks, a periodic check for cycles in graph can be done. For example,
the “wait-for” for the schedule of transactions TA and TB as above can be made as:

TB

TA

Figure 12: Wait For graph of TA and TB

 50

Structured Query
Language and
Transaction Management

Figure 13: Wait-die Scheme of Deadlock prevention

In the figure above, TA and TB are the two transactions. The two edges are present
between nodes TA and TB since each is waiting for the other to unlock a resource
held by the other, forming a cycle, causing a deadlock problem. The above case shows
a direct cycle. However, in actual situation more than two nodes may be there in a
cycle.

A deadlock is thus a situation that can be created because of locks. It causes
transactions to wait forever and hence the name deadlock. A deadlock occurs because
of the following conditions:

a) Mutual exclusion: A resource can be locked in exclusive mode by only one
transaction at a time.

b) Non-preemptive locking: A data item can only be unlocked by the transaction
that locked it. No other transaction can unlock it.

c) Partial allocation: A transaction can acquire locks on database in a piecemeal
fashion.

d) Circular waiting: Transactions lock part of data resources needed and then wait
indefinitely to lock the resource currently locked by other transactions.

In order to prevent a deadlock, one has to ensure that at least one of these conditions
does not occur.

A deadlock can be prevented, avoided or controlled. Let us discuss a simple method
for deadlock prevention.

Deadlock Prevention

One of the simplest approaches for avoiding a deadlock would be to acquire all the
locks at the start of the transaction. However, this approach restricts concurrency
greatly, also you may lock some of the items that are not updated by that transaction
(the transaction may have if conditions).Thus, better prevention algorithm have been
evolved to prevent a deadlock having the basic logic: not to allow circular wait to
occur. This approach rolls back some of the transactions instead of letting them wait.

There exist two such schemes. These are:

“Wait-die” scheme: The scheme is based on non-preventive technique. It is
based on a simple rule:

If Ti requests a database resource that is held by Tj

then if Ti has a smaller timestamp than that of Tj
it is allowed to wait;

else Ti aborts.

A timestamp may loosely be defined as the system generated sequence number that is
unique for each transaction. Thus, a smaller timestamp means an older transaction.
For example, assume that three transactions T1, T2 and T3 were generated in that
sequence, then if T1requests for a data item which is currently held by transaction T2,
it is allowed to wait as it has a smaller time stamping than that of T1. However, if T3
requests for a data item which is currently held by transaction T2, then T3 is rolled
back (die).

T1 T2 T3
Wait Die

 51

Transactions and
Concurrency
Management

“Wound-wait” sch based on a simple
rule:

then if Ti has a larger timestamp (Ti is younger) than that of Tj

For example, as 1, T2 and T3 were generated in that
sequence, then if T1requests for a data item which is currently held by transaction T2,

It is important to s ould not make a
starvation condition, that is no transaction gets rolled back repeatedly and is never

 in
at

2.6 OPTIMISTIC CONCURRENCY CONTROL

eme: It is based on a preemptive technique. It is

If Ti requests a database resource that is held by Tj

it is allowed to wait;
else Tj is wounded up by Ti.

sume that three transactions T

then T2 is rolled back and data item is allotted to T1 as T1 has a smaller time
stamping than that of T2. However, if T3 requests for a data item which is currently
held by transaction T2, then T3 is allowed to wait.

ound-wait Scheme dlock prevention

Wound T2 Wait
T2 T3 T1

Figure 14: W of Dea

ee that whenever any transaction is rolled back, it w

allowed to make progress. Also both “wait-die” & “wound-wait” scheme avoid
starvation. The number of aborts & rollbacks will be higher in wait-die scheme than
the wound-wait scheme. But one major problem with both of these schemes is th
these schemes may result in unnecessary rollbacks. You can refer to further readings
for more details on deadlock related schemes.

Is locking the only way to prevent concurrency related problems? There exist some
other methods too. One such method is called an Optimistic Concurrency control. Let

ntrol is to allow the concurrent
transactions to update the data items assuming that the concurrency related problem

ase.

private workspace. All the updates of the transaction can only change the local

b) whether the read values
have changed during the time transaction was updating the local values. This is

c) essful the transaction is committed and
updates are applied to the database, otherwise the transaction is rolled back.

Som

• read-set(T): all data items that are read by a transaction T

us discuss it in more detail in this section.

The basic logic in optimistic concurrency co

will not occur. However, we need to reconfirm our view in the validation ph
Therefore, the optimistic concurrency control algorithm has the following phases:

a) READ Phase: A transaction T reads the data items from the database into its

copies of the data in the private workspace.

VALIDATE Phase: Checking is performed to confirm

performed by comparing the current database values to the values that were read
in the private workspace. In case, the values have changed the local copies are
thrown away and the transaction aborts.

WRITE Phase: If validation phase is succ

e of the terms defined to explain optimistic concurrency contents are:

• write-set(T): all data items that are written by a transaction T

 52

Structured Query
Language and
Transaction Management

time are kept

Mo d
scheme following examples:

T2

• Timestamps: for each transaction T, the start-time and the end
for all the three phases.

re etails on this scheme are available in the further readings. But let us show this
 here with the help of the

Consider the set for transaction T1 and T2.

T1
Phase Operation Phase Operation
- - Read Reads the read set (T2). Let say

variables X and Y and
performs updating of local
values

Read Reads the read set (T1) lets
say variable X and Y and
performs updating of local

-

values

-

Validate - - Validate the values of (T1)
- Validate Validate the values of (T2) -
Write e updated values in - - Write th

the database and commit
- - Write Write the updated values in the

tabase and commit da

In this exam le both T1 and T2 get commit ase
Read Set of T2 are both disjoint, also the Write sets are also disjoint and thus no
concurrency related problem can occur.

p ted. Ple note that Read set of T1 and

T1 T2 T3
Operation Operation Operation
Read R(A) -- --

-- Rea A) d R(--
-- -- Read (D)
-- -- Update(D)
-- -- Update (A)

-- -- Validat ds OK
Write MIT

e (D,A) fin
(D,A), COM

-- Validate(A) ssful
Value changed by T3

:Unsucce --

Validate(A) ssful
Value changed by T3

:Unsucce -- --

ABORT T1 -- --
-- Ab T2 -- ort

In this case both T1 and T2 get aborted as they fail during validate phase while only
T3 is commi . Optimistic concurren performs its checking e

ansaction commits point in a validation phase. The serialization order is determined

1) Draw suitable graph for following locking requests, find whether the
or not.

tted cy control at th
tr
by the time of transaction validation phase.

 Check Your Progress 3

transactions are deadlocked

T1: S_lock A -- --
-- T2: X_lock B --
-- T2: S_lock C --

 53

Transactions and
Concurrency
Management

T3: X_lock C -- --
-- T2: S_lock A --

T1: S_lock B -- --
T1: S_lock A -- --

-- -- T3: S_lock A
All the unlocking re m herquests start fro e

………… …………………………………… …………………

…………… …………………………

2)

…………………………………………………………………………………

…………………………………

2.7

… ………………

……………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

What is Optimistic Concurrency Control?

………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

…………………………………………………………………………………

………………………………………………………………………………….

SUMMARY

In this unit you have gone throu
Management. A transaction is a

gh the concepts of transaction and Concurrency
 sequence of many actions. Concurrency control deals

with ensuring that two or more users do not get into each other’s way, i.e., updates of

s how to analyse
whether any schedule is serialisable or not. Any schedule that produces the same

annot do so and waits for the
resource to be unlocked.

d
ing (2PL). A system is in a deadlock state if there exist a

set of transactions such that every transaction in the set is waiting for another

transaction one doesn’t affect the updates of other transactions.

Serializability is the generally accepted criterion for correctness for the concurrency
control. It is a concept related to concurrent schedules. It determine

results as a serial schedule is a serialisable schedule.

Concurrency Control is usually done via locking. If a transaction tries to lock a
resource already locked by some other transaction, it c

Locks are of two type a) shared lock b) Exclusive lock. Then we move on to a metho
known as Two Phase Lock

transaction in the set. We can use a deadlock prevention protocol to ensure that the
system will never enter a deadlock state.

Finally we have discussed the method Optimistic Concurrency Control, another
concurrency management mechanism.

 54

Structured Query
Language and
Transaction Management

WERS 2.8 SOLUTIONS / ANS

Check Your Progress 1

1) A transaction is the basic unit of work on a Database management system. It
sing on the database. IT has four basic properties:

a.
b.
c. Isolation: Should not see uncommitted values

cted.

. Some transactions can do

eudo code for it.

2)

• Lost updates: An update is overwritten

in an inconsistent value is

• tent analysis: Due to reading partially updated value.

 ns do not read the same data
values. The conflict occurs only if one transaction updates a data value while

)
ack

Ch

1) There are six possible results, corresponding to six possible serial schedules:

Initially: A = 0

defines the data proces

 Atomicity: transaction is done completely or not at all.
 Consistency: Leaves the database in a consistent state

d. Durability: Once committed the changes should be refle

A transaction can update more than one data values
writing of data without reading a data value.

A simple transaction example may be: Updating the stock inventory of an item
that has been issued. Please create a sample ps

The basic problems of concurrent transactions are:

• Unrepeatable read: On reading a value later aga
found.

• Dirty read: Reading an uncommitted value

Inconsis

No these problems cannot occur if the transactio

another is reading or writing the data value.

3 Commit state is defined as when transaction has done everything correctly and
shows the intent of making all the changes as permanent. No, you cannot rollb
after commit.

eck Your Progress 2

T1-T2-T3: A = 1
T1-T3-T2: A = 2
T2-T1-T3: A = 1
T2-T3-T1: A = 2
T3-T1-T2: A = 4
T3-T2-T1: A = 3

2)

Schedule T1 T2
Read A Read A

A = A - 100 A = A - 100
Write Write A A

Read A Read A
Read B Read B

 55

Transactions and
Concurrency
Management

Read B Read B

Result = A * B A * B Result =
Display Result Display Result
B = B + 100 100 B = B +
Write B Write B

e make the pr graph and fin

Pleas ecedence d out that the schedule is not serialisable.
3)

Schedule T1 T2
Lock A Lock A

Lock B Lock B

Read A Read A

A = A - 100 00 A = A - 1
Write A Write A

Unlock A Unlock A
Lock A Lock A: Granted
Lock B Lock B: Waits
Read B Read B

B = B + 100 = B + 100 B

Write B Write B
Unlock B Unlock B
Read A Read A
Read B Read B
Result = A * B esult = A * B R
Display Result Display Result
Unlock A Unlock A
Unlock B Unlock B

must make es sive lock anYou the schedul using read and exclu d a schedule in strict
2PL.

1) The transaction T1 gets the shared lock on A, T2 gets exclusive lock on B and
le the transactions T3 gets exclusive lock on C.

• T1 now requests for Shared lock on B which is exclusively locked by T2,

t

The W

Check Your Progress 3

Shared lock on A, whi

• Now T2 requests for shared lock on C which is exclusively locked by T3, so
cannot be granted. So T2 waits for T3 on item C.

thus, it waits for T2 for item B. The T1 request for shared lock on C is not
processed.

• Next T3 requests for exclusive lock on A which is share locked by T1, so i
cannot be granted. Thus, T3 waits for T1 for item A.

ait for graph for the transactions for the given schedule is:

T1 T3

T2

 56

Structured Query
Language and
Transaction Management

Since there exists a cycle, therefore, the schedule is deadlocked.

2) The basic philosophy for optimistic concurrency trol is the optimism that
nothing will go wrong so let the transaction interleave in any fashion, but to
avoid any concurrency related problem we just validate our assumption before
we make changes permanent. This is a good model for situations having a low
rate of transactions.

 con

	Structure Page Nos.
	Introduction35
	2.1Objectives35
	2.2The Transactions35
	2.3The Concurrent Transactions38
	2.4The Locking Protocol42
	2.4.1Serialisable Schedules
	2.4.2Locks
	2.4.3Two Phase Locking (2PL)
	2.5Deadlock and its Prevention49
	2.6Optimistic Concurrency Control51
	2.7Summary53
	2.8Solutions/ Answers54
	2.0INTRODUCTION
	Properties of a Transaction
	
	Figure 1: A Transaction execution
	Figure 3: Serial Schedule of two transactions

