

47

Boolean Algebra and
Circuits

UNIT 3 BOOLEAN ALGEBRA AND CIRCUITS

Structure

3.0 Introduction
3.1 Objectives
3.2 Boolean Algebras
3.3 Logic Circuits
3.4 Boolean Functions
3.5 Summary
3.6 Solutions/ Answers

3.0 INTRODUCTION

This unit is very closely linked with Unit 1. It was C.E.Shannon, the founder of
information theory, who observed an analogy between the functioning of switching
circuits and certain operations of logical connectives. In 1938 he gave a technique
based on this analogy to express and manipulate simple switching circuits
algebraically. Later, the discovery of some new solid state devices (called electronic
switches or logic gates) helped to modify these algebraic techniques and, thereby,
paved a way to solve numerous problems related to digital systems algebraically.

 Fig. 1: Claude Shannon
In this unit, we shall discuss the symbolic logic techniques which are required for the
algebraic understanding of circuits and computer logic. In Sec. 3.2, we shall introduce
you to Boolean algebras with the help of certain examples based on objects you are
already familiar with. You will see that such algebras are apt for describing operations
of logical circuits used in computers.

In Sec. 3.3, we have discussed the linkages between Boolean expressions and logic
circuits.

In Sec. 3.4, you will read about how to express the overall functioning of a circuit
mathematically in terms of certain suitably defined functions called Boolean
functions. In this section we shall also consider a simple circuit design problem to
illustrate the applications of the relationship between Boolean functions and circuits.

Let us now consider the objectives of this unit.

3.1 OBJECTIVES

After reading this unit, you should be able to:

• define and give examples of Boolean algebras, expressions and functions;
• give algebraic representations of the functioning of logic gates;
• obtain and simplify the Boolean expression representing a circuit;
• construct a circuit for a Boolean expression;
• design and simplify some simple circuits using Boolean algebra techniques.

3.2 BOOLEAN ALGEBRAS

Let us start with some questions: Is it possible to design an electric/electronic circuit
without actually using switches(or logic gates) and wires? Can a circuit be redesigned,
to get a simpler circuit with the help of pen and paper only?

The answer to both these questions is `Yes'. What allows us to give this reply is the
concept of Boolean algebras. Before we start a formal discussion on these types of
algebras, let us take another look at the objects treated in Unit 1.

 48

Elementary Logic As before, let the letters p, q, r,. . . denote statements (or propositions). We write S for
the set of all propositions. As you may recall, a tautology T (or a contradiction F) is
any proposition which is always true (or always false, respectively). By abuse of
notation, we shall let T denote the set of all tautologies and F denote the set of all
contradictions. Thus,

T ≤ S, F ≤ S.

You already know from Unit 1 that, given two propositions p and q, both p ^ q and p v
q are again propositions. And so, by the definition of a binary operation, you can see
that both ∧ (conjunction) and ∨ (disjunction) are binary operations on the set S,
where we are writing ∧ (p, q) as p ∧ q and v (p, q) as p ∨ q ∀ p, q ∈ S.

Again, since ~ p is also a proposition, the operation ~ (negation) defines a unary
function ~: S → S. Thus, the set of propositions S, with these operations, acquires an
algebraic structure.

As is clear from Sec.1.3, under these three operations, the elements of S satisfy
associative laws, commutative laws, distributive laws and complementation laws.

Also, by E19 of Unit 1, you know that p ∨ F = p and p ∧ T = p, for any proposition p.
These are called the identity laws. The set S with the three operations and properties
listed above is a particular case of an algebraic structure which we shall now define. In the NCERT textbook, ‘+’

and ‘.’ are used instead of
‘∨’ and ‘∧’ , respectively.

Definition: A Boolean algebra B is an algebraic structure which consists of a set X
(≠ Ø) having two binary operations (denoted by ∨ and ∧), one unary operation
(denoted by ') and two specially defined elements O and I (say), which satisfy the
following five laws for all x, y, z ∈ X.

B1. Associative Laws: x ∨ (y ∨ z) = (x ∨ y) ∨ z,
 x ∧ (y ∧ z) = (x ∧ y) ∧ z

B2. Commutative Laws: x ∨ y = y ∨ x,
 x ∧ y = y ∧ x

B3. Distributive Laws: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

B4. Identity Laws: x ∨ O = x,
 x ∧ I = x

B5. Complementation Laws: x ∧ x' = O,
 x ∨ x'= I.

We write this algebraic structure as B = (X, ∨, ∧, ' , O, I), or simply B, if the context
makes the meaning of the other terms clear. The two operations ∨ and ∧ are called the
join operation and meet operation, respectively. The unary operation ' is called the
complementation.

From our discussion preceding the definition above, you would agree that the set S of
propositions is a Boolean algebra, where T and F will do the job of I and O,
respectively. Thus, (S, ∧, ∨, ~, F , T) is an example of a Boolean algebra.

We give another example of a Boolean algebra below.

Example 1: Let X be a non-empty set, and P (X) denote its power set, i.e., P (X) is the
set consisting of all the subsets of the set X. Show that P (X) is a Boolean algebra.

49

Boolean Algebra and
Circuits Solution: We take the usual set-theoretic operations of intersection (∩), union (∪),

and complementation (c) in P (X) as the three required operations. Let ø and X play
the roles of O and I, respectively. Then you can verify that all the conditions for (P

(X), ∪, ∩, c , Φ, X) to be a Boolean algebra hold good.

For instance, the identity laws (B4) follow from two set-theoretic facts, namely, `the
intersection of any subset with the whole set is the set itself' and `the union of any set
with the empty set is the set itself'. On the other hand, the complementation laws (B5)
follow from another set of facts from set theory, namely, `the intersection of any
subset with its complement is the empty set' and `the union of any set with its
complement is the whole set'.

Yet another example of a Boolean algebra is based on switching circuits. For this, we
first need to elaborate on the functioning of ordinary switches in a mathematical way.
In fact, we will present the basic idea which helped the American, C.E.Shannon, to
detect the connection between the functioning of switches and Boole's symbolic logic.

You may be aware of the functioning of a simple on-off switch which is commonly
used as an essential component in the electric (or electronic) networking systems. A
switch is a device which allows the current to flow only when it is placed in the ON
position, i.e., when the gap is closed by a conducting rod. Thus, the ON position of a
switch is one state of a switch, called a closed state. The other state of a switch is the
open state, when it is placed in the OFF position. So, a switch has two stable states.

 x= 1

x= 0
Fig. 2: OFF-ON position

There is another way to talk about the functioning of a switch. We can denote a switch
by x, and use the values 0 and 1 to depict its two states, i.e., to convey that x is open
we write x = 0, and to convey that x is closed we write x = 1 (see Fig.2).

These values which denote the state of a switch x are called the state-values
(s.v., in short) of that switch.

We shall also write x′ for a switch which is always in a state opposite to x. So that,

x is open → x' is closed and x is closed → x' is open.

Table 1: s.v. of x' The switch x' is called the invert of the switch x. For example, the switch a' shown in
Fig.3 is an invert of the switch a. x x'

0
1

1
0

Table 1 alongside gives the state value of x' for a given state value of the switch x.
These values are derived from the definition of x' and our preceding discussion.

a b

a' b

Fig. 3: a` is the invert of a.

Note that the variable x that denotes a switch can only take on 2 values, 0 and 1. Such
a variable (which can only take on two values) is called a Boolean variable. Thus, if
x is a Boolean variable, so is x'. Now, in order to design a circuit consisting of several
switches, there are two ways in which two switches can be connected: parallel
connections and series connections (see Fig.4).

Do you see a connection
between Table 1 above and
Table 10, Unit 1 ?

 a

b

 a b

 (i) Parallel Connection (ii) Series Connection

Fig. 4: Two ways of connecting switches

 50

Elementary Logic From Fig.4(i) above, you can see that in case of a parallel connection of switches a
and b (say), current will flow from the left to the right extreme if at least one of the
two switches is closed. Note that ‘parallel’ does not mean that both the switches are in
the same state.

On the other hand, current can flow in a series connection of switches only when both
the switches a and b are closed (see Fig.4 (ii)).

Given two switches a and b, we write a par b and a ser b for these two types of
connections, respectively.

In view of these definitions and the preceding discussion, you can see that the state
values of the connections a par b and a ser b, for different pairs of state values of
switches a and b, are as given in the tables below.

Table 2: State values of a par b and a ser b.

s.v.
of a

s.v.
of b

s.v. of
a par b

0
0
1
1

0
1
0
1

0
1
1
1

s.v.
of a

s.v.
of b

s.v. of
a ser b

0
0
1
1

0
1
0
1

0
0
0
1

We have now developed a sufficient background to give you the example of a
Boolean algebra which is based on switching circuits.

Example 2: The set S = {0, 1} is a Boolean algebra.

Solution: Take ser and par in place of ∧and ∨, respectively, and inversion(')
instead of ~ as the three required operations in the definition of a Boolean algebra,.
Also take 0 for the element O and 1 for the element I in this definition.
Now, using Tables 1 and 2, you can check that the five laws B1-B5 hold good. Thus,
(S, par, ser,', 0, 1) is a Boolean algebra.

A Boolean algebra whose underlying set has only two elements is very important in
the study of circuits. We call such an algebra a two-element Boolean algebra, and
denote it by B. From this Boolean algebra we can build many more, as in the
following example.

Example 3: Let Bn = B × B × · · · × B = {(e1 , e2 , . . . , e n) | each ei = 0 or 1}, for n ≥1,
be the Cartesian product of n copies of B. For ik , jk ∈ {0, 1} (1 ≤ k ≤ n), define

(i1 , i2 , . . . , in) ∧ (j1 , j2 , . . . , jn) = (i1 ∧ j1 , i2 ∧ j2 , . . . , in ∧ jn) ,
(i1 , i2 , . . . , in) ∨ (j1 , j2 , . . . , jn) = (i1 ∨ j1 , i 2 ∨ j2 , . . . , in ∨ jn) , and

 (i1 , i2 , . . . , in)' = (i'1 , i'2 , . . . , i' n) .

Then Bn is a Boolean algebra, for all n ≥ 1.

Solution: Firstly, observe that the case n = 1 is the Boolean algebra B.
Now, let us write 0 = (0, 0, . . . , 0) and I = (1, 1, . . . , 1), for the two elements of Bn
consisting of n-tuples of 0's and 1's, respectively. Using the fact that B is a Boolean
algebra, you can check that Bn , with operations as defined above, is a Boolean algebra
for every n ≥1.

The Boolean algebras Bn , n ≥ 1, (called switching algebras) are very useful for the
study of the hardware and software of digital computers.

51

Boolean Algebra and
Circuits

We shall now state, without proof, some other properties of Boolean algebras, which
can be deduced from the five laws (B1-B5).

Theorem 1: Let B = (S, ∨, ∧, ٰ, O, I) be a Boolean algebra. Then the following laws
hold ∀x, y ∈ S.

a) Idempotent laws : x ∨ x = x, x ∧ x = x.
b) Absorption laws : x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x.
c) Involution law : (x')' = x.
d) De Morgan’s laws : (x ∨ y)' = x' ∧ y' , (x ∧ y)' = x' ∨ y'.

In fact, you have already come across some of these properties for the Boolean
algebras of propositions in Unit 1. In the following exercise we ask you to verify
them.

E1) a) Verify the identity laws and absorption laws for the Boolean algebra
(S, ^, v, ~, T , F) of propositions.

 b) Verify the absorption laws for the Boolean algebra
(P(X),∪,∩, c ,Φ, X).

In Theorem 1, you may have noticed that for each statement involving ∨ and ∧, there
is an analogous statement with ∧ (instead of ∨) and ∨ (instead of ∧). This is not a
coincidence, as the following definition and result shows.

Definition : If p is a proposition involving ~, ∧ and ∨, the dual of p, denoted by pd, is
the proposition obtained by replacing each occurrence of ∧ (and/or ∨) in p by ∨
(and/or ∧, respectively) in pd .
For example, x ∨ (x ∧ y) = x is the dual of x ∧(x ∨ y) = x.

Now, the following principle tells us that if a statement is proved true, then we have
simultaneously proved that its dual is true.

Theorem 2 (The principle of duality): If s is a theorem about a Boolean algebra,
then so is its dual sd .
It is because of this principle that the statements in Theorem 1 look so similar.

Let us now see how to apply Boolean algebra methods to circuit design.

While expressing circuits mathematically, we identify each circuit in terms of some
Boolean variables. Each of these variables represents either a simple switch or an
input to some electronic switch.

Definition: Let B = (S, ∨, ∧, ', O, I) be a Boolean algebra. A Boolean expression in
variables x1, x2 , . . . , xk (say), each taking their values in the set S is defined
recursively as follows:

i) Each of the variables x1 , x2 , . . . , xk , as well as the elements O and I of the

Boolean algebra B are Boolean expressions.

ii) If X1 and X2 are previously defined Boolean expressions, then X1 ∧ X2 , X1 ∨ X

2 and X'1 are also Boolean expressions.

For instance, x1 ∧ x'3 is a Boolean expression because so are x1 and x'3 , Similarly,
because x1 ∧ x2 is a Boolean expression, so is (x1 ∧ x2) ∧ (x1 ∧ x'3).

If X is a Boolean expression in n variables x1 , x2 , . . . , xn (say), we write this as
X = X(x1 , . . . , xn) .
In the context of simplifying circuits, we need to reduce Boolean expressions to

 52

Elementary Logic simpler ones. `Simple' means that the expression has fewer connectives, and all the
literals involved are distinct. We illustrate this technique now.

Example 4: Reduce the following Boolean expressions to a simpler form.

 (a) X(x1, x2) = (x1 ∧ x2) ∧ (x1 ∧ x'2);
 (b) X(x1 , x2 , x3) = (x1 ∧ x2) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3).

Solution: (a) Here we can write
(x1 ∧ x2) ∧ (x1 ∧ x'2) = ((x1 ∧ x2) ∧ x1) ∧ x'2 (Associative law)
 = (x1 ∧ x2) ∧ x'2 (Absorption law)
 = x1 ∧ (x2 ∧ x'2) (Associative law)
 = x1 ∧ O (Complementation law)
 = O. (Identity law)

Thus, in its simplified form, the expression given in (a) above is O, i.e., a null
expression.

(b) We can write
 (x1 ∧ x2) ∨ (x1 ∧ x'2 ∧ x3) ∨ (x1 ∧ x3)
 = [x1 ∧ {x2 ∨ (x'2 ∧ x3}] ∧ (x1 ∧ x3) (Distributive law)
 = [x1 ∧{(x2 ∨ x'2) ∧ (x2 ∨ x3)}] ∧ (x1 ∧ x3) (Distributive law)
 = [x1 ∧ {I ∧ (x2 ∨ x3)}] ∧ (x1 ∧ x3) (Complementation law)
 = [x1 ∧ (x2 ∨ x3)] ∧ (x1 ∧ x3) (Identity law)
 = [(x1 ∧ x2) ∨ (x1 ∧ x3)] ∧ (x1 ∧ x3) (Distributive law)
 = [(x1 ∧ x2) ∧ (x1 ∧ x3)] ∨ [(x1 ∧ x3) ∧ (x1 ∧ x3)] (Distributive law)
 = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3) (Idemp.,& assoc. laws)
 = x1 ∧ [(x2 ∧ x3) ∨ x3] (Distributive law)
 = x1 ∧ x3 (Absorption law)
Thus, the simplified form of the expression given in (b) is (x1 ∧ x3).

Now you should find it easy to solve the following exercise.

E2) Simplify the Boolean expression
 X(x1 , x2 , x3) = (x1 ∧ x2) ∨ ((x1 ∧ x2) ∧ x3) ∨ (x2 ∧ x3).

With this we conclude this section. In the next section we shall give an important
application of the concepts discussed here.

3.3 LOGIC CIRCUITS

If you look around, you would notice many electric or electronic appliances of daily
use. Some of them need a simple switching circuit to control the auto-stop (such as in
a stereo system). Some would use an auto-power off system used in transformers to
control voltage fluctuations. Each circuit is usually a combination of on-off switches,
wired together in some specific configuration. Nowadays certain types of electronic
blocks (i.e., solid state devices such as transistors, resistors and capacitors) are more
in use. We call these electronic blocks logic gates, or simply, gates. In Fig. 5 we have
shown a box which consists of some electronic switches (or logic gates), wired
together in a specific manner. Each line which is entering the box from the left
represents an independent power source (called input), where all of them need not
supply voltage to the box at a given moment. A single line coming out of the box
gives the final output of the circuit box. The output depends on the type of input.

Boolean Algebra and
Circuits

Circuit Box

Input
power
lines

Output lead

Fig. 5: A Logic circuit

This sort of arrangement of input power lines, a circuit box and output lead is basic
to all electronic circuits. Throughout the unit, any such interconnected assemblage of
logic gates is referred to as a logic circuit.

As you may know, computer hardwares are designed to handle only two levels of
voltage, both as inputs as well as outputs. These two levels, denoted by 0 and 1, are
called bits (an acronym for binary digits). When the bits are applied to the logic gates
by means of one or two wires (input leads), the output is again in the form of voltages
0 and 1. Roughly speaking, you may think of a gate to be on or off according to
whether the output voltage is at level 1 or 0, respectively.

Table 3:Outputs of AND-gate

x1 x2 x1 ∧ x2

0
1
0
1

0
1
1
1

0
0
0
1

Three basic types of logic gates are an AND-gate, an OR-gate and a NOT-gate. We
shall now define them one by one.

Definition : Let the Boolean variables x1 and x2 represent any two bits. An AND-gate
receives inputs x1 and x2 and produces the output, denoted by x1 ∧ x2 , as given in
Table 3 alongside.

The standard pictorial representation of an AND-gate is shown in Fig.6 below.
 x1

x2
x1 ∧ x2

Fig. 6: Diagrammatic representation of an AND -gate

 From the first three rows of Table 3, you can see that whenever the voltage in any one
of the input wires of the AND-gate is at level 0, then the output voltage of the gate is
also at level 0. You have already encountered such a situation in Unit 1. In the
following exercise we ask you to draw an analogy between the two situations.

E3) Compare Table 3 with Table 2 of Unit 1. How would you relate x1 ∧ x2 with p ∧
q, where p and q denote propositions?

Let us now consider another elementary logic gate.

Definition : An OR-gate receives inputs x1 and x2 and produces the output, denoted
by x1 ∨ x2, as given in Table 4. The standard pictorial representation used for the
OR-gate is as shown in Fig.7.
 x1

x2

x1 ∨ x2

Fig. 7: Diagrammatic representation of an OR-gate

From Table 4 you can see that the situation is the other way around from that in Table
3, i.e., the output voltage of an OR-gate is at level 1 whenever the level of voltage in
even one of the input wires is 1. What is the analogous situation in the context of
propositions? The following exercise is about this.

Table 4: Output of an OR-gate.
53

x1 x2 x1 ∨ x2
0
0
1
1

0
1
0
1

0
1
1
1

 54

Elementary Logic
 E4) Compare Table 4 with Table 1 of Unit 1. How would you relate x1 ∨ x2 with p ∨

q, where p and q are propositions?

 And now we will discuss an electronic realization of the invert of a simple switch
 about which you read in Sec. 3.2.

Definition : A NOT-gate receives bit x as input, and produces an output denoted by
x', as given in Table 5. The standard pictorial representation of a NOT-gate is shown
in Fig. 8 below. Table 5: Output of a

NOT-gate
x x′

 x x'
0
1

1
0

Fig. 8: Diagrammatic representation of NOT-gate

If you have solved E5 and E6, you would have noticed that Tables 3 and 4 are the
same as the truth tables for the logic connectives ∧ (conjunction) and ∨(disjunction).
Also Table 3 of Unit 1, after replacing T by 1 and F by 0, gives Table 5. This is why
the output tables for the three elementary gates are called logic tables. You may find
it useful to remember these logic tables because they are needed very often for
computing the logic tables of logic circuits.

Another important fact that these logic tables will help you prove is given in the
following exercise.

E5) Let B = {0, 1} consist of the bits 0 and 1. Show that B is a Boolean algebra, i.e.,
that the bits 0 and 1 form a two-element Boolean algebra.

As said before, a logic circuit can be designed using elementary gates, where the
output from an AND-gate, or an OR-gate, or a NOT-gate is used as an input to other
such gates in the circuitry. The different levels of voltage in these circuits, starting
from the input lines, move only in the direction of the arrows as shown in all the
figures given below. For instance, one combination of the three elementary gates is
shown in Fig.9.

Fig. 9: A logic circuit of elementary gates.

Now let us try to see the connection between logic circuits and Boolean expressions.
We first consider the elementary gates. For a given pair of inputs x1 and x2 , the output
in the case of each of these gates is an expression of the form x1 ∧ x2 or x1 ∨ x2 or x' .

Next, let us look at larger circuits. Is it possible to find an expression associated with a
logic circuit, using the symbols ∧, ∨ and ' ? Yes, it is. We will illustrate the technique
of finding a Boolean expression for a given logic circuit with the help of some
examples. But first, note that the output of a gate in a circuit may serve as an input to
some other gate in the circuit, as in Fig. 9. So, to get an expression for a logic circuit
the process always moves in the direction of the arrows in the circuitry. With this in
mind, let us consider some circuits.

Example 5: Find the Boolean expression for the logic circuit given in Fig.9 above.

55

Boolean Algebra and
Circuits

Solution: In Fig.9, there are four input terminals. Let us call them x1 , x2 , x3 and x4 .
So, x1 and x2 are inputs to an OR-gate, which gives x1 v x2 as an output expression
(see Fig. 9(a)).

Similarly, the other two inputs x3 and x4 , are inputs to an AND-gate. They will give x3
∧ x4 as an output expression. This is, in turn, an input for a NOT-gate in the circuit.
So, this yields (x3 ∧ x4)' as the output expression. Now, both the expressions x1 ∨ x2
and (x3 ∧ x4)' are inputs to the extreme right AND-gate in the circuit. So, they give (x1
∨ x2) ∧ (x3 ∧ x4)' as the final output expression, which represents the logic circuit.
 x 1

x 2

x 3
x 4

x 1 ∨ x2

x 3 ∧ x 4 (x 3 ∧ x 4) ′

(x1 ∨ x2) ∧ (x3 ∧ x4)′

Fig. 9 (a)

You have just seen how to find a Boolean expression for a logic circuit. For more
practice, let us find it for another logic circuit.

Example 6: Find the Boolean expression C for the logic circuit given in Fig. 10.

 x1

x2
A

x3

B

C

Fig. 10

Solution: Here the first output is from an OR-gate, i.e., A is x1 ∨ x2 . This, in turn,
serves as the input to a NOT-gate attached to it from the right. The resulting bit B is
(x1 ∨ x2)' . This, and x3 , serve as inputs to the extreme right AND-gate in the circuit
given above. This yields an output expression (x1∨ x2)' ∧ x3 , which is C, the required
expression for the circuit given in Fig.10.

Why don't you try to find the Boolean expressions for some more logic circuits now?

E6) Find the Boolean expression for the output of the logic circuits given below.

 x1

x2

x3

x1
x2

 (a) (b)

So far, you have seen how to obtain a Boolean expression that represents a given
circuit. Can you do the converse? That is, can you construct a logic circuit
corresponding to a given Boolean expression? In fact, this is done when a circuit

 56

Elementary Logic designing problem has to be solved. The procedure is quite simple. We illustrate it
with the help of some examples.

Example 7: Construct the logic circuit represented by the Boolean expression
(x'1 ∧ x2) ∨ (x1 ∨ x3), where xi (1 ≤ i ≤ 3) are assumed to be inputs to that circuitry.
Solution: Let us first see what the portion (x'1 ∧ x2) of the given expression
contributes to the complete circuit. In this expression the literals x′1 and x2 are
connected by the connective ∧ (AND). Thus the circuit corresponding to it is as
shown in Fig.11(a) below, by the definitions of NOT-gate and AND-gate.

 x1

x2

x′1

x′1 ∧ x2

 x1
x3

x1 ∨ x3

a) (b)
Fig. 11: Logic circuits for the expressions x'1 ∧ x2 and x1 ∨ x3.

Similarly, the gate corresponding to the expression x1 v x3 is as shown in Fig.11(b)
above. Finally, note that the given expression has two parts, namely, x'1 ∧ x2 and
x1 ∨ x3 , which are connected by the connective ∨ (OR). So, the two logic circuits
given in Fig.11 above, when connected by an OR-gate, will give us the circuit shown
in Fig. 12 below.

x1 ∨ x3

x1

x3

x′1∧ x2

(x′1 ∧ x2) ∨ (x3 ∨ x3)

x′1

Fig.12: Circuitry for the expression (x'1 ∧ x2) ∨ (x1 ∨ x3)

This is the required logic circuit which is represented by the given expression.

Example 8: Given the expression (x'1 ∨ (x2 ∧ x'3)) ∧ (x2 ∨ x'4), find the
corresponding circuit, where xi (1 ≤ i ≤4) are assumed to be inputs to the circuitry.

Solution: We first consider the circuits representing the expressions x2 ∧ x' 3 and
x2 ∨ x'4 . They are as shown in Fig.13(a).

x2 ∨ x′4
x2

x′4

x2 ∨ x′3
x2

x′3
x′3

x3

x′4
x4

x′1

x3

x2

x′3
x2 ∧ x′3

x′1 ∨ (x2 ∧ x′3)
x1

 (a) (b) (c)

Fig. 13: Construction of a logic circuitry.

Also you know that the literals x'3 and x'4 are outputs of the NOT-gate. So, these can
be represented by logic gates as shown in Fig.13(b). Then the circuit for the part x'1 ∨
(x2 ∧ x'3) of the given expression is as shown in Fig.13(c). You already know how to
construct a logic circuit for the expression x2 ∨ x'4 .

57

Boolean Algebra and
Circuits

Finally, the two expressions (x'1 ∨ (x2 ∧ x'3)) and (x2 ∨ x'4) being connected by the
connective ∧ (AND), give the required circuit for the given expression as shown in
Fig.14.

x1
x′1

x3

x4

x2

x′3

x′4
x2 ∨ x′4

(x′1 ∨ (x2 ∧ x′3)) ∧ (x2 ∧ x′4)
x′1 ∨ (x2 ∧ x′3)

x2 ∨ x′3

Fig. 14: Circuitry for the expression (x'1 ∨ (x2 ∧ x'3)) ∧ (x2 ∨ x'4).

Why don't you try to solve some exercises now?

E7) Find the logic circuit corresponding to the expression x'1∧ (x2 ∨ x'3) .

E8) Construct the logic circuit and obtain the logic table for the expression
 x1 ∨ (x'2 ∧ x3).

So far we have established a one-to-one correspondence between logic circuits and
Boolean expressions. You may wonder about the utility of this. The mathematical
view of a circuit can help us understand the overall functioning of the circuit. To
understand how, consider the circuit given in Fig.10 earlier.

You may think of the inputs bits x1 , x2 , and x3 as three variables, each one of which
is known to have two values only, namely, 0 or 1, depending upon the level of voltage
these inputs have at any moment of time. Then the idea is to evaluate the expression
(x1 ∨ x2)' ∧ x3 , which corresponds to this circuit, for different values of the 3-tuple
(x1 , x2 , x3).

How does this evaluation help us to understand the functioning of the circuit? To see
this, consider a situation in which the settings of x1 , x2 and x3 at a certain stage of the
process are x1 = x3 = 0 and x2 = 1. Then we know that x1 ∨ x2 = 0 ∨ 1 = 1 (see the
second row of Table 3 given earlier). Further, using the logic table of a NOT-gate, we
get (x1 ∨ x2)' = 1' = 0. Finally, from Table 3, we get (x1 ∨ x2)' ∧ x3 = 0 ∧ 1 = 0.
Thus, the expression (x1 ∨ x2)' ∧ x3 has value 0 for the set of values (0, 1, 0) of input
bits (x1 , x2 , x3). Thus, if x 1 and x 3 are closed, while x2 is open, the circuit
remains closed.

Using similar arguments, you can very easily calculate the other values of the
expression (x1 ∨ x2)' ∧ x3 in the set

{0,1}3 = {(x1 , x2 , x3) | xi = 0 or 1, 1 ≤ i ≤ 3}

of values of input bits. We have recorded them in Table 6.

Observe that the row entries in the first three columns of Table 6 represent the
different values which the input bits (x1 , x2 , x3) may take. Each entry in the last
column of the table gives the output of the circuit represented by the expression
(x1 ∨ x2)' ∧ x3 for the corresponding set of values of (x1 , x2 , x3). For example, if
(x1 , x2 , x3) is (0,1,0), then the level of voltage in the output lead is at a level 0
(see the third row of Table 6).

 58

Elementary Logic
You should verify that the values in the other rows are correct.

Table 6: Logic table for the expression (x1 ∨ x2)' ∧ x3 .

x1 x2 x3 x1 v x2 (x1 v x2) (x1 v x2)´ ^ x3
0
0
0
1
0
1
1
1

0
0
1
0
1
1
0
1

0
1
0
0
1
0
1
1

0
0
1
1
1
1
1
1

1
1
0
0
0
0
0
0

0
1
0
0
0
0
0
0

Table 6 is the logic
table for the circuit
given in Fig. 10.

Why don't you try an exercise now?

E9) Compute the logic table for the circuit given in E6(b) above.

You have seen how the logic table of an expression representing a circuit provides a
functional relationship between the state (or level) of voltage in the input terminals
and that in the output lead of that logic circuitry. This leads us the concept of Boolean
functions, which we will now discuss.

3.4 BOOLEAN FUNCTIONS

In the last section you studied that an output expression is not merely a device for
representing an interconnection of gates. It also defines output values as a function of
input bits. This provides information about the overall functioning of the
corresponding logic circuit. So, this function gives us a relation between the inputs to
the circuit and its final output .

This is what helps us to understand control over the functioning of logic circuits from
a mathematical point of view. To explain what this means, let us reformulate the logic
tables in terms of functions of the input bits.

Let us first consider the Boolean expression

X(x1 , x2) = x1 ∧ x'2,

where x1 and x2 take values in B = {0, 1}. You know that all the values of this
expression, for different pairs of values of the variables x1 and x2 , can be calculated
by using properties of the Boolean algebra B. For example,

0 ∧ 1' = 0 ∧ 0 = 0 ⇒ X(0, 1) = 0.

Similarly, you can calculate the other values of X(x1, x2) = x1 ∧ x'2 over B.

In this way we have obtained a function f : B2 → B, defined as follows:

f(e1 , e2) = X(e1 , e2) = e1 ∧ e'2 , where e1 , e2 ε {0, 1}.

So f is obtained by replacing xi with ei in the expression X(x1 , x2). For example,
when e1 = 1, e2 = 0, we get f(1, 0) = 1 ∧ 0' = 1.

More generally, each Boolean expression X(x1 , x2 , . . . , xk) in k variables, where

59

Boolean Algebra and
Circuits

each variable can take values from the two-element Boolean algebra B, defines a
function f : Bk → B : f(e1 , . . . , ek) = X(e1 , . . . , ek).

Any such function is called a Boolean function.
Thus, each Boolean expression over B = {0, 1} gives rise to a Boolean function.
In particular, corresponding to each circuit, we get a Boolean function.
Therefore, the logic table of a circuit is just another way of representing the Boolean
function corresponding to it.

For example, the logic table of an AND-gate can be obtained using the function ∧ :
B2 → B : ∧ (e1 , e2) = e1 ∧ e2 .

To make matters more clear, let us work out an example.

Example 9: Let f : B2 → B denote the function which is defined by the Boolean
expression X(x1 , x2) = x'1 ∧ x'2 . Write the values of f in tabular form.

Solution: f is defined by f(e1 , e2) = e'1 ∧ e'2 for e1 , e2 ∈ {0, 1}. Using Tables 3, 4 and
5, we have

f(0, 0) = 0' ∧ 0' = 1 ∧ 1 = 1, f(0, 1) = 0' ∧ 1' = 1 ∧ 0 = 0,
f(1, 0) = 1' ∧ 0' = 0 ∧1 = 0, f(1, 1) = 1' ∧ 1' = 0 ∧ 0 = 0.

We write this information in Table 7.

Table 7: Boolean function for the expression x′1 ^ x′2 .

e1 e2 e'1 e'2 f(e1, e) = e'1 ∧ e'2
0
0
1
1

0
1
0
1

1
1
0
0

1
0
1
0

1∧1=1
1∧0=0
0∧1=0
0∧0=0

Why don't you try an exercise now?

E10) Find all the values of the Boolean function f : B2 → B defined by the Boolean
expression (x1 ∧ x2) ∨ (x1 ∧ x'3).

Let us now consider the Boolean function g : B2 → B, defined by the expression
X(x1 , x2) = (x1 ∨ x2)'.
Then g(e1 , e2) = (e1∨e2)' , e1 , e2 ε B.

So, the different values that g will take are

g(0, 0) = (0 ∨ 0)' = 0' = 1, g(0, 1) = (0 ∨ 1)'= 1' = 0,
g(1, 0) = (1 ∨ 0)' = 1' = 0, g(1, 1) = (1 ∨1)' = 1' = 0.

In tabular form, the values of g can be presented as in Table 8.

Table 8: Boolean function of the expression (x1 v x2) ′ .

 e1 e2 e1 ∨ e2 g(e1, e2) =

(e1 v e2)'
0
0
1
1

0
1
0
1

0
1
1
1

1
0
0
0

By comparing Tables 7 and 8, you can see that f(e1 , e2) = g(e1 , e2) for all

 60

Elementary Logic (e1 , e2) ∈ B2 . So f and g are the same function.

What you have just seen is that two (seemingly) different Boolean expressions can
have the same Boolean function specifying them. Note that if we replace the input
bits by propositions in the two expressions involved, then we get logically equivalent
statements. This may give you some idea of how the two Boolean expressions are
related. We give a formal definition below.

Definition : Let X = X(x1 , x2 , . . . , xk) and Y = Y(x1 , x2 , . . . , xk) be two Boolean
expressions in the k variables x1 , . . . , xk . We say X is equivalent to Y over the
Boolean algebra B, and write X ≡ Y, if both the expressions X and Y define the same
Boolean function over B, i.e.,

X(e1 , e2 , . . . , ek) = Y(e1 , e2 , . . . , ek), for all ei ∈ {0, 1}.

So, the expressions to which f and g (given by Tables 7 and 8) correspond are
equivalent.

Why don't you try an exercise now?

E11) Show that the Boolean expressions
X = (x1 ∧ x2) ∨ (x1 ∧ x3) and Y = x1 ∧ (x2 ∨ x'3)

 are equivalent over the two-element Boolean algebra B = {0, 1}.

So far you have seen that given a circuit, we can define a Boolean function
corresponding to it. You also know that given a Boolean expression over B, there is a
circuit corresponding to it. Now, you may ask:

Given a Boolean function f : Bn → B, is it always possible to get a Boolean expression
which will specify f over B? The answer is `yes', i.e., for every function f : Bn → B (n
≥ 2) there is a Boolean expression (in n variables) whose Boolean function is f itself.

To help you understand the underlying procedure, consider the following examples.

Example 10: Let f : B2 → B be a function which is defined by

 f(0, 0) = 1, f(1, 0) = 0, f(0, 1) = 1, f(1, 1) = 1.

Find the Boolean expression specifying the function f.

Solution: f can be represented by the following table.

We find the Boolean expression according to the following algorithm:

Step 1: Identify all rows of the table where the output is 1: these are the 1st,
 3rd and 4th rows.

Step 2: Combine the variables in each of the rows identified in Step 1 with `and'.
 Simultaneously, apply `not' to the variables with value zero in these rows. So,
 for the

Input Output
x1 x2 f(x1, x2)
0
1
0
1

0
0
1
1

1
0
1
1

In Boolean algebra
terminology this is known
as the ‘disjunctive normal
form’ (DNF) of the
expression.

 1st row: x'1 ∧ x'2 ,

61

Boolean Algebra and
Circuits 3rd row: x'1 ∧ x2 ,

 4th row: x1 ∧ x2 .
Step 3: Combine the Boolean expressions obtained in Step 2 with `or' to get

 the compound expression representing f:
 So, f(x1 , x2) = (x'1 ∧ x'2) ∨ (x'1 ∧ x2) ∨ (x1 ∧ x2).

You can complete Example 10, by doing the following exercise.

E12) In the previous example, show that X(e1 , e2) = f(e1 , e2) ∀e1 , e2 ∈ B.

E13) By Theorem 2, we could also have obtained the expression of f in Example
 10 in `conjunctive normal form' (CNF). Please do so.

An important remark: To get a Boolean expression for a Boolean function h (say),
we should first see how many points vi there are at which h(vi) = 0, and how many
points vi there are at which h(vi) = 1. If the number of values for which the
function h is 0 is less than the number of values at which h is 1, then we shall
choose to obtain the expression in CNF, and not in DNF. This will give us a shorter
Boolean expression, and hence, a simpler circuit. For similar reasons, we will prefer
DNF if the number of values at which h is 0 is more.

Why don't you apply this remark now?

E14) Find the Boolean expressions, in DNF or in CNF (keeping in mind the
 remark made above), for the functions defined in tabular form below.

 x1 x2 x3 f (x1, x2, x3)

1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

1
0
0
1
0
0
0
1

x1 x2 x3 g (x1, x2, x3)
1
1
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

1
1
0
1
0
0
1
1

 (a) (b)

Boolean functions tell us about the functioning of the corresponding circuit.
Therefore, circuits represented by two equivalent expressions should essentially do the
same job. We use this fact while redesigning a circuit to create a simpler one. In fact,
in such a simplification process of a circuit, we write an expression for the circuit and
then evaluate the same (over two-element Boolean algebra B) to get the Boolean
function. Next, we proceed to get an equivalent, simpler expression. Finally, the
process terminates with the construction of the circuit for this simpler expression.
Note that, as the two expressions are equivalent, the circuit represented by the
simpler expression will do exactly the same job as the circuit represented by the
original expression.

Let us illustrate this process by an example in some detail.

Example 11: Design a logic circuit capable of operating a central light bulb in
a hall by three switches x1 , x2 , x3 (say) placed at the three entrances to that hall.

Solution: Let us consider the procedure stepwise.
Step 1: To obtain the function corresponding to the unspecified circuit.

 62

Elementary Logic To start with, we may assume that the bulb is off when all the switches are off.
Mathematically, this demands a situation where x1 = x2 = x3 = 0 implies f(0, 0, 0)= 0,
where f is the function which depicts the functional utility of the circuit to be
designed.
Let us now see how to obtain the other values of f. Note that every change in the state
of a switch should alternately put the light bulb on or off. Using this fact repeatedly,
we obtain the other values of the function f.

Now, if we assign the value (1,0,0) to (x1 , x2 , x3), it brings a single change in the
state of the switch x1 only. So, the light bulb must be on. This can be written
mathematically in the form f(1, 0, 0) = 1. Here the value 1 of f stands for the on state
of the light bulb.
Then, we must have f(1, 1, 0) = 0, because there is yet another change, now in the
state of switch x2 .

You can verify that the other values of f(x1 , x2 , x3) are given as in Table 9.

Table 9: Function of a circuitry for a three-point functional bulb.

x1 x2 X3 f(x1, x2, x3)
0
1
1
1
0
0
0
1

0
0
1
1
1
1
0
0

0
0
0
1
0
1
1
1

0
1
0
1
1
0
1
0

Step 2: To obtain a Boolean expression which will specify the function f. Firstly,
note that the number of 1's in the last column of Table 9 are fewer than the number of
0's. So we shall obtain the expression in DNF (instead of CNF).

By following the stepwise procedure of Example 10, you can see that the
required Boolean expression is given by
 X(x1 , x2 , x3) = (x1 ∧ x'2 ∧ x3) ∨ (x'1 ∧ x2 ∧ x'3) ∨ (x'1 ∧ x'2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

At this stage we can directly jump into the construction of the circuit for this
expression (using methods discussed in Sec.3.3). But why not try to get a simpler
circuit?

Step 3 : To simplify the expression X(x1 , x2 , x3) given above. Firstly, observe that

(x1 ∧ x'2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) = x1 ∧ [(x'2 ∧ x3) ∨ (x2 ∧ x3)]
= x1 ∧ [(x'2 ∨ x2) ∧ x3]
= x1 ∧ (1 ∧ x3)
= x1 ∧ x3 ,

by using distributive, complementation and identity laws (in that order).
Similarly, you can see that

(x'1 ∧ x'2 ∧ x3) ∨ (x1 ∧ x3) = (x'2 ∨ x1) ∧ x3 .

We thus have obtained a simpler (and equivalent) expression, namely,

X(x1 , x2 , x3) = (x'1 ∧ x2 ∧ x'3) ∨ [(x'2 ∨ x1) ∧ x3] ,
whose Boolean function is same as the function f. (Verify this!)

Step 4: To design a circuit for the expression obtained in Step 3.

Now, the logic circuit corresponding to the simpler (and equivalent) expression

63

Boolean Algebra and
Circuits

obtained in Step 3 is as shown in Fig.15.

1 x

x 2
x 3

Fig. 15: A circuit for the expression (x'1 ∧ x2 ∧ x'3) ∨ ((x'2 ∨ x1) ∧ x3)

So, in 4 steps we have designed a 3-switch circuit for the hall.

We can't claim that the circuit designed in the example above is the simplest circuit.
How to get that is a different story and is beyond the scope of the present course.

Why don't you try an exercise now?

E15) Design a logic circuit to operate a light bulb by two switches, x1 and x2 (say).

We have now come to the end of our discussion on applications of logic. Let us
briefly recapitulate what we have discussed here.

3.5 SUMMARY

In this unit, we have considered the following points.

1. The definition and examples of a Boolean algebra. In particular, we have

discussed the two-element Boolean algebra B = {0, 1}, and the switching algebras
Bn , n ≥ 2.

2. The definition and examples of a Boolean expression.
3. The three elementary logic gates, namely, AND-gate, OR-gate and NOT-gate;
 and the analogy between their functioning and operations of logical connectives.
4. The method of construction of a logic circuit corresponding to a given Boolean
 expression, and vice-versa.
5. How to obtain the logic table of a Boolean expression, and its utility in the
 understanding of the overall functioning of a circuit.
6. The method of simplifying a Boolean expression.
7. The method of construction of a Boolean function f : Bn → B, corresponding to a
 Boolean expression, and the concept of equivalent Boolean expressions.
8. Examples of the use of Boolean algebra techniques for constructing a logic circuit

which can function in a specified manner.

3.6 SOLUTIONS/ ANSWERS

E1) a) In E19 of Unit 1, you have already verified the Identity laws. Let us proceed
to show that the propositions p ∨ (p ∧ q) and p are logically equivalent. It
suffices to show that the truth tables of both these propositions are the same.
This follows from the first and last columns of the following table.

 64

Elementary Logic

Similarly, you can see that the propositions p ∧ (p ∨ q) and

p are equivalent propositions. This establishes the absorption laws for the
Boolean algebra (S, ∧, ∨ ' , T , F).

p q p∧q p ∨ (p ∧q)
F
F
T
T

F
T
F
T

F
F
F
T

F
F
T
T

b) Let A and B be two subsets of the set X. Since A ∩ B ⊆ A, (A ∩ B) U A =
A. Similarly, as A ⊆ A U B, we have (A U B) ∩ A = A. Thus, both the forms
of the absorption laws hold good for the Boolean algebra (P(X), U, ∩, c , X,).

E2) We can write

X(x1 , x2 , x3) = ((x1 ∧ x2) ∨ ((x1 ∧ x2) ∧ x3)) ∨ (x2 ∧ x3)
 = (x1 ∧ x2) ∨ (x2 ∧ x3) (by Absorption law)

 = x2 ∧ (x1 ∨ x3) (by Distributive law)
This is the simplest form of the given expression.

E3) Take the propositions p and q in place of the bits x1 and x2 , respectively.

Then, when 1 and 0 are replaced by T and F in Table 3 here, we get the
truth table for the proposition p ∧ q (see Table 2 of Unit 1).
This establishes the analogy between the functioning of the AND-gate and the
conjunction operation on the set of propositions.

E4) Take the propositions p and q in place of the bits x1 and x2 , respectively.

Then, when 1 and 0 are replaced by T and F in Table 4 here, we get the truth
table for the proposition p∨q (see Table 1 of Unit 1).
 This establishes the analogy between the functioning of the OR-gate and the
disjunction operation on the set of propositions.

E5) Firstly, observe that the information about the outputs of the three elementary

gates, for different values of inputs, can also be written as follows:

0 ∧ 0 = 0 ∧1 = 1 ∧ 0 = 0, 1 ∧1 = 1; (see Table 3)
 0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1; and (see Table 4)
 0' = 1, 1' = 0. (see Table 5)

Clearly, then both the operations # and # are the binary operations on B and ' :
B → B is a unary operation. Also, we may take 0 for O and 1 for I in the
definition of a Boolean algebra.
Now, by looking at the logic tables of the three elementary gates, you can
see that all the five laws B1-B5 are satisfied. Thus, B is a Boolean algebra.

E6) a) Here x1 and x2 are inputs to an OR-gate, and so, we take x1 ∨ x2 as input to

the NOT-gate next in the chain which, in turn, yields (x1 ∨ x2)' as the
required output expression for the circuit given in (a).
b) Here x1 and x2 are the inputs to an AND-gate. So, the expression x1 ∧ x2
serves as an input to the NOT-gate, being next in the chain.
This gives the expression (x1 ∧ x2)' which serves as one input to the extreme
right AND-gate. Also, since x'3 is another input to this AND-gate (coming out
of a NOT-gate), we get the expression (x1 ∧ x2)' ∧ x'3 as the final output
expression which represents the circuit given in (b).

E7) You know that the circuit representing expressions x1 and x2 ∨ x'3 are as

shown in Fig.16 (a) and (b) below.

x 1

x3 x ′ 3

x2 ∨ x′ 3 x′1
x1

65

Boolean Algebra and
Circuits

(a) (b)

Fig. 16

Thus, the expression x'1 ∨ (x2 ∨ x'3), being connected by the symbol ∧, gives
the circuit corresponding to it as given in Fig.17 below.

 x1

x3

x2

x′3
x2 ∨ x′3

x′1 ∧ (x2 ∨ x′3)
x1

Fig. 17: A logic circuit for the expression x'1 ∧ (x2 ∨ x'3)

E8) You can easily see, by following the arguments given in E9, that the circuit

represented by the expression x1∨(x'2 ∧ x3) is as given in Fig.18.

Fig. 18

x3

x2
x′2 ∧ x3

x1 ∨ (x′2 ∧ x3)
x1

x′2

The logic table of this expression is as given below.

 x1 x2 x3 x'2 x'2 ∧ x3 X1 ∨ (x'2 ∧ x3)
0
0
0
1
0
1
1
1

0
0
1
0
1
1
0
1

0
1
0
0
1
0
1
1

1
1
0
1
0
0
1
0

0
1
0
0
0
0
1
0

0
1
0
1
0
1
1
1

E9) Since the output expression representing the circuit given in E8(b) is found to

be (x1 ∧ x2)' ∧ x'3, the logic table for this circuit is as given below.

x1 x2 x3 x1 ∧ x2 (x1 ∧ x2)' x'3 (x1 ∧ x2)' ∧ x'3
0
0
0
1
0
1
1
1

0
0
1
0
1
1
0
1

0
1
0
0
1
0
1
1

0
0
0
0
0
1
0
1

1
1
1
1
1
0
1
0

1
0
1
1
0
1
0
0

1
0
1
1
0
0
0
0

E10) Because the expression (x1 ∧ x2) ∨ (x1 ∧ x'3) involves three variables, the

 66

Elementary Logic corresponding Boolean function, f (say) is a three variable function, i.e. f :
B3 → B. It is defined by

f(e1, e2, e3) = (e1 ∧ e2) ∨ (e1 ∧ e'3), e1, e2 and e3 ∈ B.

Now, you can verify that the values of f in tabular form are as given in the
following table.

E11)
 To show that the Boolean expressions X and Y are equivalent over the

e 1 e2 E3 e1 ∧ e2 e'3 e1∧ e'3 f(e1, e2, e3) =
(e1∧ e2) ∨ (e1 ∧ e'3)

0
0
0
1
0
1
1
1

0
0
1
0
1
1
0
1

0
1
0
0
1
0
1
1

0
0
0
0
0
1
0
1

1
0
1
1
0
1
0
0

0
0
0
1
0
1
0
0

0
0
0
1
0
1
0
1

two-element Boolean algebra B = {0, 1}, it suffices to show that the Boolean
functions f and g (say) corresponding to the expressions X and Y,
respectively, are the same. As you can see, the function f for the expression X
is calculated in E10 above.
Similarly, you can see that the Boolean function g for the expression Y in
tabular form is as given below.

 x1 x2 x3 x'3 x2 ∨ x'3 G(x1, x2, x3) =

X1∧ (x2 ∨ x'3)
0
0
0
1
0
1
1
1

0
0
1
0
1
1
0
1

0
1
0
0
1
0
1
1

1
0
1
1
0
1
0
0

1
0
1
1
1
1
0
1

0
0
0
1
0
1
0
1

Comparing the last columns of this table and the one given in E10 above,
you can see that f(e1, e2, e3) = g(e1, e2, e3) ∀ e1, e2, e3 ∈ B = {0, 1}. Thus,
X and Y are equivalent.

E12) Firstly, let us evaluate the given expression X(x1 , x2) over the two-element

Boolean algebra B = {0, 1} as follows:
X(0, 0) = (0' ∧ 0') ∨ (0' ∧0) ∨ (0 ∧ 0)

 = (1 ∧1) ∨ (1 ∧ 0) ∨ (0 ∧ 0)
 = 1 ∨ 0 ∨ 0 = 1 = f(0, 0);

X(1, 0) = (1' ∧0') ∨ (1' ∧ 0) ∨ (1 ∧ 0)
= (0 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 0)
= 0 ∨ 0 ∨ 0 = 0 = f(1, 0);

X(0, 1) = (0' ∧1') ∨ (0' ∧1) ∨ (0 ∧1)

= (1 ∧ 0) ∨ (1 ∧1) ∨ (0 ∧ 1)
= 0 ∨ 1 ∨ 0 = 1 = f(0, 1);

X(1, 1) = (1' ∧1') ∨ (1' ∧1) ∨ (1 ∧1)

= (0 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧1)

67

Boolean Algebra and
Circuits = 0 ∨ 0 ∨ 1 = 1 = f(1, 1).

It thus follows that X(e1, e2) = f(e1, e2) ∀ e1 , e2 ∈ B = {0, 1}.

E13) Step 1: Identify all rows of the table where output is 0: This is the 2nd row.

Step 2: Combine x1 and x2 with `or' in these rows, simultaneously applying
`not' to xi if its value is 0 in the row: So, for the 2nd row the expression we
have is x1 ∨ x2 .
Step 3: Combine all the expressions obtained in Step 2 with `and' to get the
CNF form representing f: In this case there is only 1 expression.
So f is represented by x1 ∨ x2 in CNF.

E14) a) Observe from the given table that, among the two values 0 and 1 of the

function f(x1, x2, x3), the value 1 occurs the least number of times. Therefore,
by the remark made after E 13, we would prefer to obtain the Boolean
expression in DNF. To get this we will use the stepwise procedure adopted in
Example 10.
Accordingly, the required Boolean expression in DNF is given by

X(x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∧ (x1 ∧ x'2 ∧ x'3) ∨ (x'1 ∧ x'2 ∧ x'3).
 b) By the given table, among the two values 0 and 1 of the function the

points v i at which g(vi) = 0 are fewer than the points vi at which g(vi) = 1. So
we would prefer to obtain the corresponding Boolean expression in CNF.
Applying the stepwise procedure in the solution to E13, the required Boolean
expression (in CNF) is given by

X(x1, x2, x3) = (x'1 ∨ x2 ∨ x'3) ∧ (x1 ∨ x'2 ∨ x'3) ∧ (x1 ∨ x'2 ∨ x3).

E15) Let g denote the function which depicts the functional utility of the circuit to

be designed. We may assume that the light bulb is off when both the switches
x1 and x2 are off, i.e., we write g(0, 0) = 0.
Now, by arguments used while calculating the entries of Table 9, you can
easily see that all the values of the function g are as given below:

g(0, 0) = 0, g(0, 1) = 1, g(1, 0) = 1, g(1, 1) = 0.
Thus, proceeding as in the previous exercise, it can be seen that the Boolean
expression (in DNF), which yields g as its Boolean function, is given by the
expression

X(x1, x2) = (x'1 ∧ x2) ∨ (x1 ∧ x'2),
because g(0, 1) = 1 and g(1, 0) = 1.

Finally, the logic circuit corresponding to this Boolean expression is shown
in Fig. 19.

x1

x2

Fig. 19

	UNIT 3BOOLEAN ALGEBRA AND CIRCUITS
	3.1OBJECTIVES
	
	
	
	
	Fig. 6: Diagrammatic representation of an AND -gate
	Fig. 7: Diagrammatic representation of an OR-gate
	Fig. 8: Diagrammatic representation of NOT-gate
	Fig. 10
	Fig. 16

	Fig. 18
	
	
	
	Fig. 19

