

 85

Analysis of simple Algorithms UNIT 3: ANALYSIS OF SIMPLE ALGORITHMS

Structure Page Nos.

3.0 Introduction 85

3.1 Objective 85

3.2 Euclid Algorithm for GCD 86

3.3 Horner‟s Rule for Polynomial Evaluation 88

3.4 Matrix (n x n) Multiplication 90

3.5 Exponent Evaluation 92
3.5.1 Left to Right binary exponentiation

3.5.2 Right to left binary exponentiation

3.6 Searching 95
3.7.1 Linear Search

3.7 Sorting 97
3.8.1 Bubble Sort

3.8.2 Insertion Sort

3.8.3 Selection Sort

3.8 Summary 104

3.9 Model Answers 105

3.10 Further Reading 110

3.0 INTRODUCTION

In the previous unit we have studied about asymptotic notation and efficiency analysis

of algorithm. In the continuation this unit will provide an insight to various categories

of algorithm and their complexity analysis. Algorithms considered for analyzing the

complexity are Euclid‟s algorithm to compute GCD, Matrix Multiplication of square

matrix. Variants of exponent evaluation algorithm and its brute force approach and the

major difference in the order of complexity is discussed. Further searching algorithm

is described and analyzed for various cases like best case, worst case and average case

as described in the Unit2. Then sorting algorithm is categorized on the basis of storage

of input data in primary memory or secondary memory. In this unit we have discussed

only few internal sorting algorithms and their complexity analysis.

3.1 OBJECTIVES

After studying this unit, you should be able to:

 Algorithm to compute GCD and its analysis

 An algorithm to evaluate polynomial by Horner‟s rule

 Analysis of Matrix Multiplication algorithm

 Exponent evaluation in logarithmic complexity

 Linear search and its complexity analysis

 Basic sorting algorithm and their analyis

86

Introduction to Algorithm 3.2 EUCLID ALGORITHM FOR GCD

Let us take some basic algorithm construct that will be helpful through out this unit

for computing execution time of any algorithm. To compute the same we will count

the number of basic operation and its cost to find total cost of an algorithm.

For example: Sequence of statement

 Cost Time

x=x+2; c1 1

a=b; c2 1

Total cost for sequence statement will be = 1 x c1 + 1 x c2

 = c1+c2 i.e proportional to constant 1

For example : Looping construct

 Cost time

a=b; c1 1

for(i=0;i<n;i++) c2 n+1

 x= x+2 c3 n

Total cost for above looping construct will be = 1 x c1 + c2 (n+1) + c3 x n

 = (c1+c2)+ n(c2+c3) i.e proportional to n

For example : Nested Looping construct

 Cost time

a=b; c1 1

z=2; c2 1

for(i=0;i<n;i++) c3 n+1

{

 x= x+2 c4 n

 for(j=0;j<n;j++) c5 n x (n+1)

 y=y+1 c6 n x n

}

Total cost for above looping construct will be =

c1+c2+c3 x (n+1) + c4 x n + c5 x n x (n+1) + c6 x n x n

i.e proportional to n
2

The algorithm for calculating GCD will be explained in two steps. In the first step we

will write pseudo code and in the second step the algorithms will be discussed. This

algorithm can be easily coded into a programming language. Further explanation of

the algorithm is supported through an example.

Let us define GCD (Greatest Common divisor) Problem that you might have already

read earlier or referred somewhere during your school days.

GCD of two non negative, non zero (both) integers i.e. m and n, is the largest integer

that divides both m and n with a remainder of zero. Complexity analysis of an

algorithm for computing GCD depends on which algorithm will be used for GCD

computation. In this section Euclid‟s Algorithm is used to find GCD of two non

negative, both non zero integers, m and n.

Step I : Pseudo code for Computing GCD(m,n) by Euclid‟s Method

// m and n are two positive numbers where m is dividend and n is divisor

1. If n=0 , return m and exit else proceed to step 2.

2. Divide m by n and assign remainder to r.

3. Assign the value of n to m and value of r to n. Go back to step 1.

 87

Analysis of simple Algorithms Step II : Algorithm for Computing GCD(m,n) by Euclid‟s Method

Input: Two non negative, non zero integers m and n

Output : GCD of m and n

function gcd(m,n)

{

 while (n 0)

 {

 r= m mod n

 m=n

 n=r

 }

 return m

}

Example: Find the GCD of 662 and 414

Let m= 662 and n=414

Divide m by n to obtain quotient and remainder.

 662=414 ∙ 1+248---------(1) // here 1 is quotient and 248 is remainder

In subsequent iterations dividend and divisor are based on what number we get as a

divisor and as a remainder respectively of previous iteration.

So, subsequent iterations are as follows:

 414=248 ∙ 1+166 --------------(2) // now m is 414 and n is 166

 248=166 ∙ 1+82 ----------------(3) // now m is 248 and n is 82

 166=82 ∙ 2 + 2 -----------------(4) // now m is 166 and n is 2

 82= 2 ∙ 41 + 0 -----------------(5) // now m is 82 and n is 0

According to Euclid‟s algorithm, step (1) gcd(662,414)=gcd(414,248)

 step(2) gcd(414,248)=gcd(248,166)

 step(3) gcd(248,166)=gcd(166,82)

 step (4) gcd(166,82)=gcd(82,2)

 step (5) gcd (82,2)= gcd (2,0)

Combining above all gives gcd(662,414)=2 which is the last divisor that gives

remainder 0.

Complexity Analysis

In function gcd(m,n), each iteration of while loop has one test condition, one division

and two assignment that will take constant time. Hence number of times while loop

will execute will determine the complexity of the algorithm. Here it can be observed

that in subsequent steps, remainder in each step is smaller than its divisor i.e smaller

than previous divisor. The division process will definitely terminate after certain

number of steps or until remainder becomes 0.

Best Case

If m=n then there will be only one iteration and it will take constant time i.e O(1)

88

Introduction to Algorithm

Worst Case

If n=1 then there will be m iterations and complexity will be O(m)

If m=1 then there will be n iterations and complexity will be O(n)

Average Case

By Euclid‟s algorithm it is observed that

 GCD(m,n) = GCD(n,m mod n) = GCD(m mod n, n mod (m mod n))

Since m mod n = r such that m = nq + r, it follows that r < n, so m > 2r. So after every

two iterations, the larger number is reduced by at least a factor of 2 so there are at

most O(log n) iterations.

Complexity will be O(log n), where n is either the larger or the smaller number.

 Check Your Progress 1

1. Find GCD(595,252) by Euclid‟s algorithm.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2. Why Euclid‟s algorithm‟s to compute GCD stops at remained 0?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3.3 HORNER’S RULE FOR POLYNOMIAL

EVALUATION

The algorithm for evaluating a polynomial at a given point using Horner‟s rule will be

explained in two steps. In the first step we will write pseudo code and in the second

step the algorithm will be discussed. This algorithm can be easily coded into any

programming language. Further explanation of the algorithm is supported through an

example.

In this section we will discuss the problem of evaluating a polynomial using Horner‟s

rule. This problem is also a familiar problem. Before discussing the algorithm , let us

define the problem of polynomial evaluation. Consider the polynomial

p(x)=anx
n
+an-1x

n-1
+…..+a1x

1
+a0x

0

where a0,a1,…..an-1,an are real numbers and we have to evaluate polynomial at a

specific value for x.

//For Example: p(x)=x
2
+3x+2

At x=2, p(x) = 2
2
+3.2+2 = 4+6+2=12//

Now, we will discuss Horner‟s rule method for polynomial evaluation.

 89

Analysis of simple Algorithms Consider a polynomial p(x) = ax
2
 + bx + c which can be written as x(x(a)+b)+c by

using Horner‟s simplification.

Now cconsidering a general polynomial p(x), p(x) = anx
n
 + a(n-1)x

(n-1)
 + … + a1x

1
 +

a0x
0

Which can be rewritten as p(x) = ((an + a(n-1))x + a(n-2))x + … + a1)x + a0 by using

Horner‟s simplification.

Step I. Pseudo code for polynomial evaluation using Horner method, Horner(a,n,x)

//In this a is an array of n elements which are coefficient of polynomial of degree

n

1. Assign value of polynomial p= coefficient of nth term in the polynomial

2. set i= n-1

 4. compute p = p * x + a[i];

5. i=i-1

6. if i is greater than or equal to 0 Go to step 4.

7. final polynomial value at x is p.

Step II. Algorithm to evaluate polynomial at a given point x using Horner‟s rule:

Input: An array a[0..n] of coefficient of a polynomial of degree n and a point x

Output: The value of polynomial at given point x

Evaluate_Horner(a,n,x)

{

p = a[n];

for (i = n-1; i 0;i--)

 p = p * x + a[i];

return p;

}

For Example: p(x)=x
2
+3x+2 using Horner „s rule can be simplified as follows

At x=2,

 p(x) = (x+3)x+2

p(2)=(2+3).2+2

 = (5).2+2

 =10+2

 =12

Complexity Analysis

Polynomial of degree n using horner‟s rule is evaluated as below:

Initial Assignment, p = an

after iteration 1, p = x an + an–1

after iteration 2, p = x(x an + an–1) + an–2

 = x
2
an + x an–1 + an–2

Every subsequent iteration uses the result of previous iteration i.e next iteration

multiplies the previous value of p then adds the next coefficient, i.e.

p = x(x
2
an + x an–1 + an–2) + an–2

 = x
3
an + x

2
 an–1 + xan–2 + an–3 etc.

Thus, after n iterations, p = x
n
an + x

n–1
an–1 + … + a0, which is the required correct

value.

90

Introduction to Algorithm

 In above function

 First step is one initial assignment that takes constant time i.e O(1).

For loop in the algorithm runs for n iterations, where each iteration cost O(1)

as it includes one multiplication, one addition and one assignment which takes

constant time.

Hence total time complexity of the algorithm will be O(n) for a polynomial of

degree n.

 Check Your Progress 2

1. Evaluate p(x)= 3x
4
+2x

3
-5x+7 at x=2 using Horne‟s rule. Discuss step wise

iterations.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2. Write basic algorithm to evaluate a polynomial and find its complexity. Also

compare its complexity with complexity of Horner‟s algorithm.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3.4 MATRIX (N X N) MULTIPLICATION

Matrix is very important tool in expressing and discussing problems which arise from

real life cases. By managing the data in matrix form it will be easy to manipulate and

obtain more information. One of the basic operations on matrices is multiplication.

In this section matrix multiplication problem is explained in two steps as we have

discussed GCD and Horner‟s Rule in previous section. In the first step we will brief

pseudo code and in the second step the algorithm for the matrix multiplication will be

discussed. This algorithm can be easily coded into any programming language.

Further explanation of the algorithm is supported through an example.

Let us define problem of matrix multiplication formally , Then we will discuss how to

multiply two square matrix of order n x n and find its time complexity. Multiply two

matrices A and B of order nxn each and store the result in matrix C of order nxn.

A square matrix of order nxn is an arrangement of set of elements in n rows and n

columns.

Let us take an example of a matrix of order 3 x 3 which is represented as

A= a11 a12 a13

 a21 a22 a23

 a31 a32 a33 3x3

This matrix A has 3 rows and 3 columns.

 91

Analysis of simple Algorithms

Step I : Pseudo code: For Matrix multiplication problem where we will multiply two

matrices A and B of order 3x3 each and store the result in matrix C of order 3x3.

1. Multiply first row first element of first matrix with first column first element of

second matrix.

2. Similarly perform this multiplication for first row of first matrix and first column

of second matrix. Now take the sum of these values.

3. The sum obtained will be first element of product matrix C

4. Similarly Compute all remaining element of product matix C.

i.e c11= a11 x b11 + a12 x b21 + a13 x b31

 C= A x B

Step II : Algorithm for multiplying two square matrix of order n x n and find the

product matrix of order n x n

Input: Two n x n matrices A and B

Output: One n x n matrix C = A x B

Matrix_Multiply(A,B,C,n)

{

for i = 0 to n-1 //outermost loop

 for j = 0 to n-1

 {

 C[i][j]=0 //assignment statement

 for k = 0 to n-1 // innermost loop

 C[i][j] = C[i][j] + A[i][k] * B[k][j]

 }

}

For Example matrix A (3 x 3) , B(3 x3)

A = 1 2 3

 2 3 4

 4 5 6

B = 1 1 1

 2 3 2

 3 2 1

To compute product matrix C= A x B

c11 c12 c13 1x1+2x2+3x3 1x1+2x3+3x2 1x1+2x2+3x1

21 c22 c23 = 2x1+3x2+4x3 2x1+3x3+4x2 2x1+3x2+4x1

c31 c32 c33 4x1+5x2+6x3 4x1+5x3+6x2 4x1+5x2+6x1

 = 14 13 8

 20 19 12

 32 31 20

92

Introduction to Algorithm

Complexity Analysis

First step is, for loop that will be executed n number of times i.e it will take O(n) time.

The second nested for loop will also run for n number of time and will take O(n) time.

Assignment statement inside second for loop will take constant time i.e O(1) as it

includes only one assignment.

The third for loop i.e innermost nested loop will also run for n number of times and

will take O(n) time . Assignment statement inside third for loop will cost O(1) as it

includes one multiplication, one addition and one assignment which takes constant

time.

Hence, total time complexity of the algorithm will be O(n
3
) for matrix multiplication

of order nxn.

 Check Your Progress 3

1. Write a program in „C‟ to find multiplication of two matrices A[3x3] and B[3 x3].

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3.5 EXPONENT EVALUATION

In section 3.4 of this unit we have discussed Horner‟s rule to evaluate polynomial and

its complexity analysis. But computing x
n
 at some point x = a i.e a

n
 tends to brute

force multiplication of a by itself n times. So computing x
n

is most important

operation. It has many applications in various fields for example one of well known

field is cryptography and encryption methods. In this section we will discuss binary

exponentiation methods to compute x
n
. In this section first we will discuss pseudo

code then we will explain algorithm for computing x
n
. In this binary representation of

exponent n is used for computation of exponent. Processing of binary string for

exponent n to compute x
n
 can be done by following methods:

 left to right binary exponentiation

 right to left binary exponentiation

3.6.1 Left to right binary exponentiation

In this method exponent n is represented in binary string. This will be processed from

left to right for exponent computation x
n
 at x=a i.e a

n
. First we will discuss its pseudo

code followed by algorithm.

Step I : Pseudo code to compute a
n
 by left to right binary exponentiation method

// An array A of size s with binary string equal to exponent n, where s is length of

binary string n

1. Set result =a

2. set i=s-2

3. compute result = result * result

4. if A[i] = 1 then compute result = result * a

5. i=i-1 and if i is less than equal to 0 then go to step 4.

6. return computed value as result.

 93

Analysis of simple Algorithms Step II : Algorithm to compute a
n
 by left to right binary exponentiation method is as

follows:

Input: a
n
 and binary string of length s for exponent n as an array A[s]

Output: Final value of a
n
 .

1. result =a

2. for i=s-2 to 0

3. result = result * result

4. if A[i]= 1 then

5. result= result * a

6. return result (i.e a
n
)

Let us take an example to illustrate the above algorithm to compute a
17

In this exponent n=17 which is equivalent to binary string 10001

Step by step illustration of the left to right binary exponentiation algorithm for a
17

 :

s=5

result=a

Iteration 1:

i=3

result=a *a= a
2

A[3] 1

Iteration 2:

i=2

result= a
2
 * a

2
= a

4

A[2] 1

Iteration 3

i=1

result= a
4
 * a

4
= a

8

A[1] 1

Iteration 4

i=0

result= a
8
 * a

8
= a

16

A[0] = 1

result = a
16

* a = a
17

return a
17

In this example total number of multiplication is 5 instead of 16 multiplications in

brute force algorithm i.e n-1

Complexity analysis: This algorithm performs either one multiplication or two

multiplications in each iteration of a for loop in line no. 2 of the algorithm.

Hence

Total number of multiplications in the algorithm for computing a
n
 will be in the range

of s-1 ≤ f(n) ≤ 2(s-1) where s is length of the binary string equivalent to exponent n

and f is function that represent number of multiplication in terms of exponent n. So

94

Introduction to Algorithm
complexity of the algorithm will be O(log2 n) As n can be representation in binary by

using maximum of s bits i.e n=2
s
 which further implies s= O(log2 n)

3.6.2 Right to left binary exponentiation

In right to left binary exponentiation to compute a
n
 , processing of bits will start from

least significant bit to most significant bit.

Step I : Pseudo code to compute a
n
 by right to left binary exponentiation method

// An array A of size s with binary string equal to exponent n, where s is length of

binary string n

1. Set x =a

2. if A[0]= 1 then set result =a

3. else set result =1

4. Initialize i=1

5. compute x = x * x

6. if A[i] = 1 then compute result = result * x

7. Increment i by 1 as i=i+1 and if i is less than equal to s-1 then go to step 4.

8. return computed value as result.

Step II : Algorithm to compute a
n
 by right to left binary exponentiation method

algorithm is as follows:

Input: a
n
 and binary string of length s for exponent n as an array A[s]

Output: Final value of a
n
.

1. x=a

2. if A[0]=1 then

3. result = a

4. else

5. result=1

6. for i= 1 to s-1

7. x= x * x

8. if A[i]=1

9. result= result * x

10. return result (i.e a
n
)

Let us take an example to illustrate the above algorithm to compute a
17

In this exponent n=17 which is equivalent to binary string 10001

Step by step illustration of the right to left binary exponentiation algorithm for a
17

 :

s=5, the length of binary string of 1‟s and 0‟s for exponent n

Since A[0] =1 , result=a

Iteration 1:

i=1

x=a *a= a
2

A[1] 1

Iteration 2:

i=2

x= a
2
 * a

2
= a

4

 95

Analysis of simple Algorithms A[2] 1

Iteration 3

i=3

x= a
4
 * a

4
= a

8

A[3] 1

Iteration 4

i=4

x= a
8
 * a

8
= a

16

A[4] = 1

result = result * x = a * a
16

 = a
17

return a
17

In this example total number of multiplication is 5 instead of 16 multiplication in

brute force algorithm i.e n-1

Complexity analysis: This algorithm performs either one multiplication or two

multiplications in each iteration of for loop as shown in line no. 6.

Hence

Total number of multiplications in the algorithm for computing a
n
 will be in the range

of s-1 ≤ f(n) ≤ 2(s-1) where s is length of the binary string equivalent to exponent n

and f is function that represent number of multiplication in terms of exponent n. So

complexity of the algorithm will be O(log2 n) As n can be representation in binary by

using maximum of s bits i.e n=2
s
 which further implies s= O(log2 n)

From the above discussion we can conclude that the complexity for left to right binary

exponentiation and right to left binary exponentiation is logarithmic in terms of

exponent n.

 Check Your Progress 4

1. Compute a
283

 using left to right and right to left binary exponentiation.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3.6 SEARCHING

Computer system is generally used to store large amount of data. For accessing a data

item from a large data set based on some criteria/condition searching algorithms are

required. Many algorithms are available for searching a data item from large data set

stored in a computer viz. linear search, binary search. In this section we will discuss

the performance of linear search algorithm. Binary search will be discussed in the

Block-2. In the next section we will examine how long the linear search algorithm will

take to find a data item/key in the data set.

96

Introduction to Algorithm

3.7.1 Linear Search

Linear searching is the algorithmic process of finding a particular data item/key

element in a large collection of data items. Generally search process will return the

value as true/false whether the searching item/element is found/present in data set or

not?

We are given with a list of items. The following table shows a data set for linear

search:

7 17 3 9 25 18

In the above table of data set, start at the first item/element in the list and compared

with the key. If the key is not at the first position, then we move from the current item

to next item in the list sequentially until we either find what we are looking for or run

out of items i.e the whole list of items is exhausted. If we run out of items or the list is

exhausted, we can conclude that the item we were searching from the list is not

present.

The key to be searched=25 from the given data set

In the given data set key 25 is compared with first element i.e 7 , they are not equal

then move to next element in the list and key is again compared with 17 , key 25 is not

equal to 17. Like this key is compared with element in the list till either element is

found in the list or not found till end of the list. In this case key element is found in the

list and search is successful.

Let us write the algorithm for the linear search process first and then analyze its

complexity.

// a is the list of n elements, key is an element to be searched in the list

function linear_search(a,n,key)

{

 found=false // found is a boolean variable which will store either true or false

 for(i=0;i<n;i++)

 {

 if (a[i]==key)

 found = true

 break;

 }

 if (i==n)

 found = false

 return found

}

For the complexity analysis of this algorithm, we will discuss the following cases:

a. best case time analysis

b. worst-case time analysis

c. average case time analysis

 To analyze searching algorithms, we need to decide on a basic unit of computation.

This is the common step that must be repeated in order to solve the problem. For

 97

Analysis of simple Algorithms searching, comparison operation is the key operation in the algorithm so it makes

sense to count the number of comparisons performed. Each comparison may or may

not discover the item we are looking for. If the item is not in the list, the only way to

know it is to compare it against every item present.

 Best Case:

The best case - we will find the key in the first place we look, at the beginning of the

list i.e the first comparison returns a match or return found as true. In this case we

only require a single comparison and complexity will be O(1).

Worst Case:

In worst case either we will find the key at the end of the list or we may not find the

key until the very last comparison i.e nth comparison. Since the search requires n

comparisons in the worst case, complexity will be O(n).

Average Case:

On average, we will find the key about halfway into the list; that is, we will compare

against n/2 data items. However, that as n gets larger, the coefficients, no matter what

they are, become insignificant in our approximation, so the complexity of the linear

search, is O(n). The average time depends on the probability that the key will be found

in the collection - this is something that we would not expect to know in the majority

of cases. Thus in this case, as in most others, estimation of the average time is of little

utility.

If the performance of the system is crucial, i.e. it's part of a life-critical system, and

then we must use the worst case in our design calculations and complexity analysis as

it tends to the best guaranteed performance.

The following table summarizes the above discussed results.

Case Best Case Worst Case Average Case

item is present O(1) O(n) O(n/2) = O(n)

item is not present O(n) O(n) O(n)

However, we will generally be most interested in the worst-case time calculations as

worst-case times can lead to guaranteed performance predictions.

Most of the times an algorithm run for the longest period of time as defined in worst

case. Information provide by best case is not very useful. In average case, it is difficult

to determine probability of occurrence of input data set. Worst case provides an upper

bound on performance i.e the algorithm will never take more time than computed in

worse case. So, the worst-case time analysis is easier to compute and is useful than

average time case.

3.7 SORTING

Sorting is the process of arranging a collection of data into either ascending or

descending order. Generally the output is arranged in sorted order so that it can be

easily interpreted. Sometimes sorting at the initial stages increases the performances

of an algorithm while solving a problem.

98

Introduction to Algorithm
Sorting techniques are broadly classified into two categories:

- Internal Sort: - Internal sorts are the sorting algorithms in which the complete data

set to be sorted is available in the computer‟s main memory.

- External Sort: - External sorting techniques are used when the collection of

complete data cannot reside in the main memory but must reside in secondary storage

for example on a disk.

In this section we will discuss only internal sorting algorithms. Some of the internal

sorting algorithms are bubble sort, insertion sort and selection sort. For any sorting

algorithm important factors that contribute to measure their efficiency are the size of

the data set and the method/operation to move the different elements around or

exchange the elements. So counting the number of comparisons and the number of

exchanges made by an algorithm provides useful performance measures. When

sorting large set of data, the number of exchanges made may be the principal

performance criterion, since exchanging two records will involve a lot of time. For

sorting a simple array of integers, the number of comparisons will be more important.

Let us discuss some of internal sorting algorithm and their complexity analysis in next

section.

3.8.1 Bubble Sort

In this we will discuss the bubble sort algorithm and study its complexity analysis. A

list of numbers is given as input that needs to be sorted. Let us explain the process of

sorting via bubble sort with the help of following Tables

23 18 15 37 8 11

18 23 15 37 8 11

18 15 23 37 8 11

18 15 23 37 8 11

18 15 23 8 37 11

18 15 23 8 11 37

18 15 23 8 11 37

15 18 23 8 11 37

15 18 23 8 11 37

15 18 8 23 11 37

15 18 8 11 23 37

15 18 8 11 23 37

15 18 8 11 23 37

15 8 18 11 23 37

15 8 11 18 23 37

15 8 11 18 23 37

8 15 11 18 23 37

8 11 15 18 23 37

8 11 15 18 23 37

8 11 15 18 23 37

8 11 15 18 23 37

In this the given list is divided into two sub list sorted and unsorted. The largest

element is bubbled from the unsorted list to the sorted sub list. After each

 99

Analysis of simple Algorithms iteration/pass size of unsorted keep on decreasing and size of sorted sub list gets on

increasing till all element of the list comes in the sorted list. With the list of n

elements, n-1 pass/iteration are required to sort. Let us discuss the result of iteration

shown in above tables.

In iteration 1, first and second element of the data set i.e 23 and 18 are compared and

as 23 is greater than 18 so they are swapped. Then second and third element will be

compared i.e 23 and 15 , again 23 is greater than 15 so swapped. Now 23 and 37 is

compared and 23 is less than 37 so no swapping take place. Then 37 and 8 is

compared and 37 is greater than 8 so swapping take place. At the end 37 is compared

with 11 and again swapped. As a result largest element of the given data set i.e 37 is

bubbled at the last position in the data set. Similarly we can perform other iterations of

bubble sort and after n-1 iteration we will get the sorted list.

The algorithm for above sorting method is as below:

// a is the list of n elements to be sorted

function bubblesort(a,n)

{

 int i,j,temp,flag=true;

 for(i=0; i<n-1 && flag==true; i++) // outer loop

 {

 flag=false

 for(j=0; j<n-i-1; j++) // inner loop

 {

 if(a[j]>a[j+1])

 {

 flag=true

 temp = a[j]; // exchange

 a[j] = a[j+1]; // exchange

 a[j+1] = temp; // exchange

 }

 }

 }

}

Complexity analysis of bubble sort is as follows.

Best-case:

When the given data set in an array is already sorted in ascending order the number of

moves/exchanges will be 0, then it will be clear that the array is already in order

because no two elements need to be swapped. In that case, the sort should end, which

takes O(1). The total number of key comparisons will be (n-1) so complexity in best

case will be O(n).

Worst-case:

100

Introduction to Algorithm
In this case the given data set will be in descending order that need to be sorted in

ascending order. Outer loop in the algorithm will be executed n-1 times (as i ranges

from 0 to n-2, when i will be n-1 it will exit from the loop).

The number of comparison and exchanges is depicted below:

i j ranges between (no. of

comparisons)

No. of exachange

0 0 to n-2 3(n-1)

1 0 to n-3 3(n-2)

2 0 to n-4 3(n-3)

--- --- ---

--- --- ---w

n-2 0 to1 3(1)

Total number of exchanges will be the following summation

3*(1+2+...+n-1) = 3 * n*(n-1)/2 i.e O(n
2
). The number of key comparison will be

(1+2+...+n-1)= n*(n-1)/2 i.e O(n
2
). Hence complexity in worst case will be O(n

2
).

Average –case:

In this case we have to consider all possible initial data arrangement. So as in case of

worst case, outer loop will be executed n-1 times. The number of exchanges will be

O(n
2
). The number of key comparison will be i.e O(n

2
).So the complexity will be

O(n
2
).

3.8.2 Insertion Sort

This sort is usually applied by card players or for the insertion of new elements into a

sorted sequence. It is more appropriate for small input size of data/list. Let us consider

a data set to discuss the method of insertion sort as follows:

23 18 15 37 8 11

23 18 15 37 8 11

18 23 15 37 8 11

15 18 23 37 8 11

15 18 23 37 8 11

8 15 18 23 37 11

8 11 15 18 23 37

In insertion sort, the list will be divided into two parts sorted and unsorted. In each

pass, the first element of the unsorted part is picked up, transferred to the sorted sub

list, and inserted at the appropriate place. In each pass the algorithm inserts each

element of the array into its proper position. A list of n elements will take at most n-1

passes to sort the given data data in ascending order.

For the input data set under consideration, let us discuss iterations of insertion sort

algorithm. In first iteration first element of the list and second element of the list are

compared i.e 23 and 18. As 23 is greater than 18 , so they are exchanged. In second

iteration third element of the list i.e 15 is compared with second element and it is less

than that so second element 23 is shifted down then it is compared with first element

 101

Analysis of simple Algorithms and it is less than that also so first element will also be shifted down. Now there is no

more element above that so third element 15 appropriate position is first. This way

rest of the element will get their right position and sorted list will be obtained.

The algorithm for the insertion sort is as below:

// a is an array or the list of n element to be sorted in ascending order

function insertionSort(a,n)

{

 int i,j,key;

 for (i=1;i< n;i++) //outer loop

 {

 key= a[i] //exchange

 j = i-1

 while (j >= 0 and a[j] > key) // inner loop

 {

 a[j+1] = a[j] //exchange

 j = j-1

 }

 a[j+1] = key //exchnage

 }

}

Running time depends not only on the size of the array but also the contents of the

array i.e already data is sorted or in descending order. Complexity analysis of

insertion sort algorithm is as follows.

Best-case:

In best case array data is already sorted in ascending order. Then inner loop will not

be executed at all and the number of moves/exchanges will be 2*(n-1) i.e O(n). The

number of key comparisons will be n-1 i.e O(n). So complexity in best case will be

O(n).

Worst case:

In worst case data element of the array will be given in descending order. In the outer

loop of above algorithm i range from 1 to n-1. So, the inner loop in the algorithm will

be executed n-1 times.

The number of moves for outer loop exchanges will be 2(n-1).

i Outerloop

exchange

Innerloop

exchange

Inner loop

comparison

1 2 1 1

2 2 2 2

3 2 3 3

n-1 2 n-1 n-1

The number of exchanges will be 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2 i.e

O(n
2
).

The number of key comparison will be (1+2+...+n-1)= n*(n-1)/2 i.e O(n
2
). Hence

complexity in worst case will be O(n
2
).

102

Introduction to Algorithm
Average case:

In this case we have to consider all possible initial data arrangement. It is difficult to

figure out the average case. i.e. what will be probability of data set either in mixed /

random input. We can not assume all possible inputs before hand and all cases will be

equally likely. For most algorithms average case is same as the worst case. So as in

case of worst case, outer loop will be executed n-1 times. The number of

moves/assignment will be O(n
2
). The number of key comparison will be i.e O(n

2
). So

the complexity in average case will be O(n
2
).

3.8.3 Selection Sort

Now we will discuss the selection sort algorithm and its complexity analysis. A list of

numbers is given as input that needs to be sorted. Let us explain the process of sorting

via selection sort with the help of following Tables

23 18 15 37 8 11

8 18 15 37 23 11

8 11 15 37 23 18

8 11 15 37 23 18

8 11 15 37 23 18

8 11 15 18 23 37

8 11 15 18 23 37

In this algorithm the list will be divided into two sub lists, sorted and unsorted. Here

we find the smallest element of the list and replace it by the first element of the list i.e

beginning element of the given list. Then find the second smallest element and

exchange it with the element in the second position, and continue in this way until the

entire array is sorted. After each selection and swapping, the two sub lists will be there

where first sub list move one element ahead, increasing the number of sorted elements

and second sub list decreasing the number of unsorted elements by one. In one pass

we move one element from the unsorted sublist to the sorted sublist. A list of n

elements requires n-1 passes to completely rearrange the data in sorted i.e ascending

order.

For given data set, in first iteration minimum from the complete list is obtained i.e 8

so this will be exchanged with first position in the list i.e 23. Then in second iteration

minimum from the remaining list will be found out i.e 11 and exchanged with second

position element of the list i.e 18. This process will be continued for rest of the list

also and finally we will get sorted list.

The algorithm for the insertion sort is as below:

// a is an array or the list of n element to be sorted

function selectionsort (a,n)

{

 103

Analysis of simple Algorithms int i, j;

 int min, temp;

 for (i = 0; i < n-1; i++) //outer loop

 {

 min = i;

 for (j = i+1; j < n; j++) //inner loop

 {

 if (a[j] < a[min])

 min = j;

 }

 temp = a[i];

 a[i] = a[min]; Swap operation

 a[min] = temp;

 }

}

In selectionsort function, the outer for loop executes n-1 times. Swap operation once

at each iteration of outer loop. Total number of Swaps will be n-1 and in each swap

operation three moves or assignment are performed. This gives the total

moves/assignment for outer loop as 3*(n-1). The inner loop executes the size of the

unsorted list minus 1 i.e from i+1 to n-1 for every iterations of outer loop. Number of

key comparison for each iteration of inner loop is one. Total number of key

comparisons will be equal to 1+2+...+n-1 = n*(n-1)/2 So, Selection sort complexity is

O(n
2
).

The following table will describe about number of moves and comparison.

i j range No. of moves in

outer loop

No. of comparison

in inner loop

0 1 to n-1 3 1

1 2 to n-1 3 1

2 3 to n-1 3 1

n-2 n-1 to n-1 3 1

Let us summarize the number of moves and comparison for selection sort algorithm.

Total moves/assignment for outer loop = 3*(n-1).

Total number of key comparisons = 1+2+...+n-1 = n*(n-1)/2 = O(n
2
)

So, Selection sort algorithm complexity is O(n
2
).

The best case, the worst case, and the average case complexity of the selection sort

algorithm are same that is O(n
2
). As none of the loop in the algorithm is dependent on

the type of data either it is already sorted or in reverse order or mixed. It indicates that

behavior of the selection sort algorithm does not depend on the initial organization of

data.

104

Introduction to Algorithm

Following Table summarizes the above discussed results for different sorting

algorithms.

Algorithm Best Case Worst Case Average Case

Bubble Sort O(n) O(n
2
) O(n

2
)

Insertion Sort O(n) O(n
2
) O(n

2
)

Selection Sort O(n
2
) O(n

2
) O(n

2
)

 Check Your Progress 5

1. Write advantages and disadvantages of linear search algorithm.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2. Write the iterations for sorting the following list of numbers using bubble sort,

selection sort and insertion sort:

 45, 67, 12, 89, 1, 37, 25, 10

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3.8 SUMMARY

In this unit various categories of algorithm and their analysis is described like GCD,

matrix multiplication, polynomial evaluation, searching and sorting. For GCD

computation Euclid‟s algorithm is explained and complexity in best case O(1) , worst

case O(m) or O(n) depending upon input and in average case it is O(log n). Horner‟s

rule is discussed to evaluate the polynomial and its complexity is O(n) where n will be

the degree of polynomial. Basic matrix multiplication is explain for finding product of

two matrices of order nxn with time complexity in the order of O(n
3
). For exponent

evaluation both approaches i.e left to right binary exponentiation and right to left

binary exponentiation is illustrated. Time complexity of these algorithms to compute

x
n
 is O(log n). In large data set to access an element searching algorithm are

required. Here linear search algorithm and its analysis are discussed. Sorting is the

process of arranging a collection of data into either ascending or descending order.

Classification of sorting algorithm based on data storage in primary memory or

secondary memory. Internal sorting algorithms are applied where data to be sorted is

stored in primary memory. Otherwise if input data can not be stored in primary

memory and stored in secondary memory, external sorting techniques are used. In this

unit few internal sorting algorithms like bubble, selection and insertion and their

complexity analysis in worst case, best case and average are discussed.

 105

Analysis of simple Algorithms

3.9 MODEL ANSWERS

Check Your Progress 1:

Answers:

1. 595 = 2 x 252 + 91

 252 = 2 x 91 +70

 91 = 1 x 70 + 21

 70 = 3 x 21 + 7

 21 = 3 x 7 + 0

GCD(595,252)= 7

According to Euclid‟s algorithm, step (1) gcd(595,252)=gcd(252,91)

 step(2) gcd(252,91)=gcd(91, 70)

 step(3) gcd(91,70)=gcd(70,21)

 step (4) gcd(70,21)=gcd(21,7)

 step (5) gcd (21,7)= gcd (7,0)

Combining above all gives gcd(595, 252)=7 which is the last divisor that gives

remainder 0.

2. In Euclid‟s algorithm, at each step remainder decreases at least by 1. So after

finite number of steps remainder must be 0. Non zero remained gives GCD of

given two numbers.

Check Your Progress 2:

Answers:

1. Show the steps of Horner‟s rule for p(x)= 3x
4
+2x

3
-5x+7 at x=2

poly=0 , array a[5]={7,-5,0,2,3}

Iteration 1,

poly = x * 0 + a[4] = 3

Iteration 2,

poly = x * 3 + a[3]

 = 2 * 3 + 2 = 6 +2 = 8

Iteration 3,

poly = x * 8 + a[2]

 = 2 * 8 + 0 = 16 + 0 = 16

Iteration 4,

poly = x * 16 + a[1]

 = 2 * 16 + (-5) = 32 -5 = 27

Iteration 5,

poly = x * 27 + a[0]

 = 2 * 27 + 7 = 54 + 7 = 61

106

Introduction to Algorithm

2. A basic (general) algorithm:

/* a is an array with polynomial coefficient, n is degree of polynomial, x is the point at

which polynomial will be evaluated */

function(a[n], n, x)

{

 poly = 0;

 for (i=0; i <= n; i++)

 {

 result =1;

 for (j=0; j<i; j++)

 {

 result= result * x;

 }

 poly= poly + result *a[i];

 }

 return poly.

}

Time Complexity of above basic algorithm is O(n
2
) where n is the degree of the

polynomial. Time complexity of the Horner‟s rule algorithm is O(n) for a polynomial

of degree n. Basic algorithm is inefficient algorithm in comparison to Horner‟s rule

method for evaluating a polynomial.

Check Your Progress 3:

Answers:

1. C program to find two matrices A[3x3] and B[3x3]

#include<stdio.h>

int main()

{

 int a[3][3],b[3][3],c[3][3],i,j,k,sum=0;

 printf("\nEnter the First matrix->");

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 scanf("%d",&a[i][j]);

 printf("\nEnter the Second matrix->");

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 scanf("%d",&b[i][j]);

 printf("\nThe First matrix is\n");

 for(i=0;i<3;i++)

 {

 printf("\n");

 for(j=0;j<3;j++)

 {

 printf("%d\t",a[i][j]);

 }

 }

 printf("\nThe Second matrix is\n");

 for(i=0;i<3;i++)

 107

Analysis of simple Algorithms {

 printf("\n");

 for (j=0;j<3;j++)

 printf("%d\t",b[i][j]);

 }

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 c[i][j]=0;

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 sum=0;

 for(k=0;k<3;k++)

 sum=sum+a[i][k]*b[k][j];

 c[i][j]=sum;

 }

 }

 printf("\nThe multiplication of two matrix is\n");

 for(i=0;i<3;i++)

 {

 printf("\n");

 for(j=0;j<3;j++)

 printf("%d\t",c[i][j]);

 }

 return 0;

}

Check Your Progress 4

Answers:

1. Left to right binary exponentiation for a
283

 is as follows:

 n=283, binary equivalent to binary string 100011011, s=9 (length of binary

string)

 result = a

Iteration no. i Bit result

1 7 0 a
2

2 6 0 a
4

3 5 0 a
8

4 4 1 (a
8
)

2
*a= a

17

5 3 1 (a
17

)
2
*a= a

35

6 2 0 (a
35

)
2
= a

70

7 1 1 (a
70

)
2
*a= a

141

8 0 1 (a
141

)
2
*a= a

283

 Right to left binary exponentiation for a
283

 is as follows:

 n=283, binary equivalent to binary string 100011011, s=9 (length of binary

string)

 result = a (since A[0]=1)

Iteration no. i Bit x result

1 1 1 a
2
 a *a

2
 = a

3

108

Introduction to Algorithm
2 2 0 a

4
 a

3

3 3 1 a
8
 a

3
 * a

8
= a

11

4 4 1 (a
8
)

2
 a

16
 * a

11
= a

27

5 5 0 (a
16

)
2
 (a

27
)

6 6 0 (a
32

)
2
 a

27

7 7 0 (a
64

)
2
 a

27

8 8 1 (a
128

)
2
 (a

256
)* a

27
=

a
283

Check Your Progress 5:

Answers:

1. Linear search algorithm is easy to write and efficient for short list i.e input data list

is small in size. It does not have any prerequisite like data should be sorted or not

sorted.

However, it is lengthy and time consuming where data set is large in size. There is no

quicker method to identify whether the item to be searched is present in the list or not.

The linear search situation will be in worst case if the element is at the end of the list.

In case of element is not present in the list then also whole list is required to be

searched.

2. List of numbers to be sorted 45, 67, 12, 89, 1, 37, 25, 10.

 Bubble sort:

 Iteration 1:

 45,67,12,89,1,37,25,10

 45,12,67,89,1,37,25,10

 45,12,67,89,1,37,25,10

 45,12,67,1,89,37,25,10

 45,12,67,1,37,89,25,10

 45,12,67,1,37,25,89,10

 45,12,67,1,37,25,10,89

 Iteration 2:

 45,12,67,1,37,25,10

12,45,67,1,37,25,10

12,45,67,1,37,25,10

12,45,1,67,37,25,10

12,45,1,37,67,25,10

12,45,1,37,25,67,10

12,45,1,37,25,10,67

Iteration 3:

12,45,1,37,25,10

12,45,1,37,25,10

12,1,45,37,25,10

12,1,37,45,25,10

12,1,37,25,45,10

12,1,37,25,10,45

 109

Analysis of simple Algorithms Iteration 4:

12,1,37,25,10

1,12,37,25,10

1,12,37,25,10

1,12,25,37,10

1,12,25,10,37

Iteration 5:

1,12,25,10,

1,12,25,10,

1,12,25,10,

1,12,10,25

Iteration 6:

1,12,10,

1,12,10

1,10,12

Iteration 7:

1,10

1,10

Iteration 8:

1

Sorted list: 1,10,12,25,45,67,89

Selection Sort:

45, 67, 12, 89, 1, 37, 25, 10

1,67,12,89,45,25,10

1,10,12,89,45,25,67

1,10,12,89,45,25,67

1,10,12,25,45,89,67

1,10,12,25,45,89,67

1,10,12,25,45,67,89

1,10,12,25,45,67,89

Insertion Sort:

45, 67, 12, 89, 1, 37, 25, 10

45,67,12,89,1,37,25,10

12,45,67,89,1,37,25,10

12,45,67,89,1,37,25,10

1, 12,45,67,89,37,25,10

1,12,37,45,67,89,25,10

1,12,25,37,45,67,89,10

1,10,12, 25,37,45,67,89

110

Introduction to Algorithm

3.10 FURTHER READINGS

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, Clifford Stein, “Introduction to

Algorithms”, 2 nd Ed., PHI, 2004.

2. Robert Sedgewick, “Algorithms in C”, 3
rd

 Edition, Pearson Education, 2004

3. Ellis Horowitz, Sartaj Sahani, Sanguthevar Rajasekaran, “Fundamentals of

Computer algorithms”, 2
nd

 Edition, Universities Press, 2008

4. Anany Levitin, “Introduction to the Design and Analysis of Algorithm”, Pearson

Education, 2003.

