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3.0  INTRODUCTION 

 

The vast majority of computer algorithm operate on data. Organsing these data in a 

certain way (i.e. data structure) has a significant role is design and analysis of 

algorithm. Graph is one such fundamental data structure. Array, linked list, stack, 

queue, tree, sets are other important data structures. A graph is generally used to 

represent connectivity information i.e. connectivity between cities for example. 

Graphs have been used and considered very interesting data structures with a large 

number of applications for example the shortest path problem. While several 

representations of a graph are possible, we discuss in the unit the two most common 

representations of a graph: adjacency matrix and adjacency list. Many graph 

algorithms requires visiting nodes and vertices of a graph. This kind of operation  is 

also called traversal. You must have read various traversal methods for tree such as 

preorder,  postorder and inorder  In this unit we present two graph traversal algorithms 

which are called as Depth first search and Breadth first search algorithm.  

 

3.1  OBJECTIVES 

 

After going through this unit you will be able to  

 

 define a graph, 

 

 differentiate between an undirected and a directed graph, 

 

 represent a graph though a adjacency matrix and an adjacency list and; 

 

 traverse a graph using DFS and BFS. 
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Graph Algorithms 3.2  BASIC DEFINITION AND TERMINOLOGIES 

 

A graph G = (V. E) is a set of vertices V, with edges connecting some of the vertices 

(edge set E). An edge between vertex u and v is denoted as (u, v). There are two types 

of a graph: (1) undirected a graph and directed graph (digraph). In a undirected graph 

the edges have no direction whereas in a digraph all edges have direction.  

 

You can notice that edges have no direction. Let us have an example of an undirected 

graph (figure 1) and a directed graph (figure 2) 

 

 

 

 

 

 

Figure.1 Undirected graph 

V = {0, 1, 2, 3, 4, 5} 

E = {(0, 1) , (0, 2),  

       (1,2),  or (2, 2) both are same  

    

        (2, 3),  

        (3, 4), (3, 5) 

        (4, 5) 

        } 

 

 

 

 

Figure 2: Diagraph 

V = {0, 1, 2, 3, 4, 5, } 

E = { (0, 1), 
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Design Techniques        (3, 4), (3, 5) 

       (4, 5) and (5, 4) are not the same. These are two different edges. 

       (5, 4) 

You can notice in Figure 2 that edges have direction  

You should also consider the following graph preparations.  

The geometry of drawing has no particular meaning: edges of a graph can be drawn 

“straight” or “curved”. 

A vertex v is adjacent to vertex u, if there is an edge (u, v). In an undirected graph, 

existence of edge (u, v) means both u and v are adjacent to each other. In a digraph, 

existence of edge (u, v) does not mean u is adjacent to v. 

 

PATH 

 

An edge may not have a weight. A path in a graph is sequence of vertices V1 V2….Vn 

such that consecutive vertices Vi Vi + 1 have an edge between them, i.e., Vi + 1 is 

adjacent to Vi 

 

A path in a graph is simple if all vertices are distinct i.e. no repetition of a path of any 

vertices (and therefore edges) in the sequence, except possibly the first and the last 

one. Length of a path is the number of edges in the path. A cycle is a path of length at 

least 1 such that the first and the last vertices are equal. A cycle is a simple path with 

the same vertex as the first and the last vertex in the sequence if the path is simple. For 

undirected graph, we require a cycle to have distinct edges. Length of a cycle is the 

number of edges in the cycle.  

 

There are many problems in computer science such as of route with minimum time 

and diagnostic: minimum shortcut path routing, traveling sales problem etc. can be 

designed using paths obtained by marking traversal along the edges of a graph. 

 

CONNECTED GRAPHS 

 

Connectivity: A graph is connected if there is a path from every vertex to every other 

vertex. In an undirected graph, if there is a path between every pair of distinct vertices 

of the graph, then the undirected graph is connected. The following example 

illustrates this: 

 

 

 

  

 

 

 

(a) Connected  (b) Unconnected 
 

Figure 3: The connected and unconnected undirected graph 
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Graph Algorithms 
In the above example G, there is a path between every pair of distinct vertices of the 

graph, therefore G1 is connected. However the graph G2 is not connected.  

In directed graph, two vertices are strongly connected if there is a  (directed) path 

from one to the other. 

Undirected: Two vertices are connected if there is a path that includes them. 

Directed: Two vertices are strongly-connected if there is a (directed) path from any 

vertex to any other. 

3.3  GRAPH REPRESENTATION 

 

In this section, we will study the two more important data structure for graph 

representation: Adjacency matrix and Adjacency list.  

 

3.3.1 ADJACENCY MATRIX 
 
The adjacency matrix of a graph G = {V, E} with n vertices is a n x n boolean/matrix. 

In this matrix the entry in the ith row and jth column is 1 if there is an edge from the 

ith vertex to the jth vertex in the graph G. If there is no such edge, then the entry will 

be zero. It is to be noted that  

(i) the adjacency matrix of a undirected graph is always symmetric, i.e., M [i,j] = M [j, 

i]  

(ii) The adjacency matrix for a directed graph need not be symmetric. 

(iii) The memory requirement of an adjacency matrix is n
2
 bits 

For example for the graph in the following figure (a) is adjacency matrix is given in 

(b) 

 

 

 

 

Figure.  4 (a)     

 

0 1 0 1 0 

1 0 1 0 1 

1 1 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

 

Figure.4 (b) Adjacency Matrix 
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Design Techniques Let us answer the following questions: 

 

(i) Suppose if we want to know how much time will take in finding number of edges a 

graph with n vertices? 

 

Since the space needed to represent a graph is n
2
 bits where n is a number of vertices. 

All algorithm will require at least 0 (n
2
) time because n

2
 – n entries of the matrix have 

to be examined. Diagonal entries are zero. 

 

(ii) Suppose the most of the entries in the adjacency matrix are zeros, i.e., when a 

graph is a sparse... How much time is needed to the find m number of edges in a 

graph? It will take much less time if say 0 (e + n), where e is the number of edges is a 

graph and e << n
2
/2. But this can be achieved if a graph is represented through an 

adjacency list where only the edges will be represented. 

 
3.3.2 ADJACENCY LIST 
 

The adjacency list of a graph or a diagraph is a set of linked lists, one linked list for 

each vertex. The nodes in the linked list i contain all the vertices that are adjacent to 

vertex i of the list (i.e. all the vertices connected to it by an edge). The following 

figure.5 represents adjacency list of the graph in figure 4 (a). 

 

 
 

 

 

 

 

Figure. 5 Adjacency List 

Putting it in another way of an adjacency list represents only columns of the adjacency 

matrix for a given vertex that contains entries as 1’s. It is to be observed that 

adjacency list compared to adjacency matrix consumes less memory space if a graph 

is sparse. A graph with few edges is called sparse graph. If the graph is dense, the 

situation is reverse. A dense graph, is a graph will relatively few missing edges. In 

case of an undirected graph with n vertices and e edge adjacency list requires n head 

and 2 e list nodes (i.e. each edges is represented twice). 

 

What is the storage requirement (in terms of bits) for a adjacency list of any graph! 

(i) For storing n (n vertices) head nodes – we require – log2 n bits – 

(ii) For storing list nodes for each head n  nodes – we require log n + log e  

 

Therefore total storage requirement in item of bits for adjacency matrix is 
2
log2n 

(
2
log2

n
 + log2

e
) 

 

Question. What is time complexity in determining number of edges in an undirected 

graph. 

 

It may be done in just 0 (n + e) because in degree of any vertex (i.e. number of edges 

incident to that vertex) in an undirected graph may be determined by just counting the 

number of nodes in its adjacency list. 
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Graph Algorithms 
Use of adjacency matrix or adjacency list for representing your graph – depends upon 

the type of a problem; type of algorithm to be used for solving a problem and types of 

a input graph (dense or sparse) 

 

3.4  GRAPH TRAVERSAL ALGORITHMS 

 

3.4.1 DEPTH-FIRST SEARCH 
 

You are aware of tree traversal mechanism. Give a tree, you can traverse it using 

preorder, inorder and postorder. Similarly given an undirected graph you can traverse 

it or visit its nodes using breadth first-search and depth-first search. 

 

Searching in breadth-first search or depth first search means exploring a given graph. 

Through searching a graph one can find out whether a graph is connected or not? 

There are many more applications of graph searching algorithms. In this section we 

will illustrate Depth First Search algorithm followed by Breadth first Search algorithm 

in the next section. 

 

The logic behind this algorithm is to go as far as possible from the given starting node 

searching for the target. In case, we get a node that has no adjacent/successor node, 

we get back (recursively) and continue with the last vertex that is still not visited.  

 

Broadly it is divided into 3 steps: 

 

 Take a vertex that is not visited yet and mark it visited 

 Go to its first adjacent non-visited (successor) vertex and mark it visited 

 If all the adjacent vertices (successors) of the considered vertex are 

already visited or it doesn’t have any more adjacent vertex (successor) – 

go back to its parent vertex 

 

Before starting with an algorithm, let us discuss the terminology and structure used in 

the algorithm. The following algorithm works for undirected graph and directed graph 

both. 

 

The following color scheme is to maintain the status of vertex i.e mark a vertex is 

visited or unvisited or target vertex: 

 

 white- for an undiscovered/unvisited vertex 

            gray - for a discovered/visited vertex 

           black - for a finished/target vertex 

 The structure given below is used in the algorithm. 

p[u]- Predecessor or parent node. 

Two (2) timestamps referred as  

     t[u] – First time discovering/visiting  a vertex, store a counter or number of times   

     f[u]=  finish off / target vertex 

 

Let us write the algorithm DFS for any given graph G. In graph G, V is the vertex set 

and E is the set of edges written as G(V,E). Adjacency list for the given graph G is 

stored in Adj array as described in the previous section. 

 

color[] - An array color will have status of vertex as white or gray or black as defined 

earlier in this section.  
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Design Techniques  DFS(G) 

    { 

        for each v in V,    //for loop  V+1 times 

       { 

 color[v]=white; // V times 

     p[v]=NULL;  // V times 

        } 

        time=0;   // constant time O(1) 

       for each u in V,   //for loop V+1 times 

           if (color[u]==white)  // V times 

  DFSVISIT(u) // call to DFSVISIT(v) , at most V times O(V) 

 

   } 

 

DFSVISIT(u) 

   { 

        color[u]=gray;  // constant time 

        t[u] = ++time; 

        for each v in Adj(u)  // for loop 

             if (color[v] == white) 

                 { 

                       p[v] = u; 

                       DFSVISIT(v); // call to DFSVISIT(v) 

                 } 

        color[u] = black;  // constant time 

        f[u]=++time;  // constant time 

} 

Complexity analysis 

 

In the above algorithm, there is only one DFSVISIT(u) call for each vertex u in the 

vertex set V. Initialization complexity in DFS(G) for loop is O(V). In second for loop 

of DFS(G) , complexity is O(V) if we leave the call of DFSVISIT(u). 

Now, Let us find the complexity of function DFSVISIT(u) 

The complexity of for loop will be O(deg(u)+1) if we do not consider the recursive 

call to DFSVISIT(v). For recursive call to DFSVISIT(v), (complexity will be O(E) as  

Recursive call to DFSVISIT(v) will be at most the sum of degree of adjacency for all 

vertex v in the vertex set V. It can be written as  |Adj(v)|=O(E)    v V 

Hence, overall complexity for DFS algorithm is O(V + E) 
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Graph Algorithms 
The strategy of the DFS is to search “deeper” in the graph whenever possible. 

Exploration of vertex is in the fashion that first it goes deeper then widened.  

Let us take up an example to see how exploration of vertex takes place by Depth First 

Search algorithm. 

 

 

Adjacency list of the above graph is as below: 

 

Let us explore the vertices of the graph using DFS algorithm. 
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Graph Algorithms 

 

 

 

 

 

 

 

Now each vertex of the given graph is visited/explored by DFS algorithm and DFS 

tree is as follows: 
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Design Techniques 

 

Data structure used for implementing DFS algorithm is stack. In the diagram along 

with each vertex start and finish time is written in the format a/b here a represent start 

time and b represent finish time. This will result in to tree or forest. The order of 

vertices explored by DFS algorithm according to adjacency list considered for given 

graph is 1,2,3,4,5.   

3.4.2 BREADTH-FIRST SEARCH 
 

In this section, we will discuss breadth first search algorithm for graph. This is very 

well known searching algorithm. A traversal depends both on the starting vertex, and 

on the order of traversing the adjacent vertices of each node. The analogy behind 

breadth first search is that it explores the graph wider then deeper.  The method starts 

with a vertex v then visit all its adjacent nodes v1,v2,v3…then move to the next node 

which is adjacent to v1, v2, v3 …. This also referred as level by level search.  

Basic steps towards exploring a graph using breadth-first search:   

 Mark all vertices as "unvisited".  

 Start with start vertex v 

 Find an unvisited vertex that are adjacent to v , mark them visited 

 Next consider all recently visited vertices and visit unvisited vertices adjacent 

to them 

 Continue this process till all vertices in the graph are explored /visited 

Now, let us see the structure used in this algorithm and color scheme for status of 

vertex.  

Color scheme is same as used in DFS algorithm i.e to maintain the status of vertex i.e 

mark a vertex is visited or unvisited or target vertex: 

 white- for an undiscovered/unvisited vertex 

            gray - for a discovered/visited vertex 

           black - for a finished/target vertex 

The structure given below is used in the algorithm. G will be the graph as G(V,E) with 

set of vertex V and set of edges E.  

p[v]-The parent or predecessor of vertex  

d[v]-the number of edges on the path from s to v.  

Data structure used for breadth-first search is queue, Q (FIFO), to store gray vertices. 

color[v]- This array will keep the status of vertex as white, grey or black 
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Graph Algorithms 
The following algorithm for BFS takes input graph G(V,E) where V is set of vertex 

and E is the set of edges. Graph is represented by adjacency list i.e Adj[]. Start vertex 

is s in V. 

Line  BFS(G,s) 

No. { 

1.          for each v in V  - {s}   // for loop  

 { 

2.   color[v]=white; 

3.      d[v]= INFINITY; 

4.    p[v]=NULL; 

 } 

5.          color[s] = gray; 

6.  d[s]=0;  

7.  p[s]=NULL; 

8.  Q= ;  // Initialize queue is empty  

9.  Enqueue(Q,s); /* Insert start vertex s in Queue Q */ 

10.   while Q is nonempty  // while loop 

            { 

11.                   u = Dequeue[Q];  /* Remove an element from Queue Q*/

  

12.   for each v in Adj[u]  // for loop 

  { 

13.        if (color[v]  == white) /*if v is unvisted*/ 

             { 

14.             color[v] = gray;  /* v is visted */ 

15.             d[v]  = d[u] + 1; /*Set distance of v to no. of edges 

from s to u*/ 

16.    p[v]  = u;  /*Set parent of v*/ 

17.             Enqueue(Q,v); /*Insert  v in Queue Q*/ 

               } 

     } 

18.   color[u]  = black; /*finally visted or explored vertex 

u*/ 

 } 

} 

Complexity Analysis 
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Design Techniques In this algorithm first for loop executes at most O(V) times. 

 

While loop executes at most O(V) times as every vertex v in V is enqueued only once 

in the Queue Q. Every vertex is enqueued  once and dequeued once so queuing will 

take at most O(V) time.  

Inside while loop, there is for loop which will execute at most O(E) times as it will be 

at most the sum of degree of adjacency for all vertex v in the vertex set V. 

Which can be written as  |Adj(v)|=O(E) 

       v V 

Let us summarize the number of times a statement will execute in the algorithm for 

BFS. 

Line no. No. of times statement will 
execute 

Cost 

1 V O(V) 

2 V-1  

3 V-1  

4 V-1 O(1) 

5 1  

6 1  

7 1  

8 1  

9 1  

10 V+1 O(V) 

11 V  

12 V+E+1 O(V+E) 

13 V+E  

14 V  

15 V  

16 V  

17 V  

18 V  

 

Thus overall complexity of BFS will be V + V + E, i.e.  O(V+E) 
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Graph Algorithms 
Let us take up an example to see how exploration of vertex takes place by Breadth 

First Search algorithm. 

 

The adjacency list of the above graph is as below: 

 

Let us explore vertices of the graph by BFS algorithm. 

Consider initial vertex as vertex 1. 

Initial status of the Queue is Q =  Ø 
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Graph Algorithms 

 

 

 

 

 

 

Q  =   Ø 

After exploring the vertex of given graph by BFS algorithm, BFS traversal sequence 

is  

1, 2, 3, 4, 5 

In this algorithm sequence of vertex visited or explored may vary. The final sequence 

of vertex visited is dependent on adjacency list. But the array d[] will have same 

number irrespective of order of vertices in adjacency list. In the above diagram 

distance is shown along the vertex. According to adjacency list drawn in the diagram, 

exploration sequence of vertex by BFS algorithm is 1,2,3,4,5. 

 
 Check Your Progress 1 
 

1. What is the complexity of graph search algorithms if graph is represented by 

adjacency matrix and adjacency list? 

2. Enlist few applications where DFS and BFS can be used? 
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Design Techniques 3. Consider a graph with 5 vertices and 6 edges. Write its adjacency matrix and 

adjacency list. 

 

 

 

 

 

 

4. For the following graph write DFS and BFS traversal sequence. 

 

 

 

 

 

 
 
 

3.5  SUMMARY 

 

A graph G(V,E) where V is the finite set of vertices i.e { v1,v2,v3….} and E is the 

finite set of edges {(u,v),(w,x)….}. Graph is known as directed graph if the each edge 

in the graph has ordered pair of vertices i.e (u,v) means an edge from u to v. In 

Undirected graph each edge is unordered pair of vertices i.e (u,v) and (v,u) refers to 

the same edge. A graph can be represented by adjacency matrix and adjacency list. In 

adjacency, list memory requirement is more as compared to adjacency list 

representation. Graph searching problem has wide range of applications. Breadth First 

search and Depth first search are very well known searching algorithms. In breadth 

first search, exploration of vertex is wider first then deeper. In depth first search it is 

deeper first and then it is widened. By exploration of vertex in any search algorithm, 

implies visiting or traversing each vertex in the graph. Data structure used for Breadth 

first search is queue and depth first search is stack. By using these search algorithms, 

connected components of graph can be found. Breadth first search method, gives 

shortest path between two vertices u and v. Depth first search is used in topological 

sorting. There are many more applications where these searching algorithms are used.   

 

3.6  SOLUTIONS/ANSWERS 

 

Check Your Progress 1 

1. For BFS algorithm complexity will be as follows: 

Adjacency Matrix – O(V
2
) 

  Adjacency List – O(V+E) 

 

V1 

V3 

V5 V4 

V2 

A 

C 

F E 

B 

D G 
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Graph Algorithms 
 For DFS algorithm complexity is as follows: 

  Adjacency Matrix – O(V
2
) 

  Adjacency List – O(V+E) 

 

2. Application where DFS can be used: 

 Finding connected component of the graph 

 Finding shortest path between two vertices 

 Application where BFS can be used: 

 Finding connected component of the graph 

 Topological sorting 

 For finding cycle existence in the graph or not 

3. 

Adjacency Matrix 

 V1 V2 V3 
 

V4 V5 

V1 

 

0 1 1 0 0 

V2 

 

1 0 1 1 0 

V3 

 

1 1 0 0 1 

V4 
 

0 1 0 0 1 

V5 
 

0 0 1 1 0 

 
 

Adjacency List 

V1 

 V2 

V3 

V4 

V5 

 

 

V2 

 

 V3 

 

 

V1 

 

 V3 

 

 V4 

 

 

V1 

 

 V2 

 

 V5 

 

 

V2 

 

 V5 

 

 

V3 

 

 V4 
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Design Techniques 4. For the given graph  

 
 

 

 

 

 

 

 BFS  traversal sequence is  A B C D E F G 

 DFS  traversal sequence is     A B D E C F G 
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