

37

Java Language Basics

UNIT 3 JAVA LANGUAGE BASICS

Structure Page Nos.

3.0 Introduction 37
3.1 Objectives 37
3.2 Introduction To Java 37
 3.2.1 Basic Features
 3.2.2 Java Virtual Machine Concepts
 3.2.3 A Simple Java Program
3.3 Primitive Data Type And Variables 46
 3.3.1 Java Keywords
 3.3.2 Integer and Floating Point Data Type
 3.3.3 Character and Boolean Types
 3.3.4 Declaring and Initialization Variables
3.4 Java Operators 53
3.5 Summary 59
3.6 Solutions/Answers 60

3.0 INTRODUCTION

Java is an island in Indonesia, or you can say Java is type of coffee, but Java is most
popular as a programming language. In 1991 Java Programming Language stepped
into the world and got dominant status. In this unit you will learn the advantages and
strength of Java, and what actually makes Java powerful and popular.

Broadly a Java program can be divided into two types, Application and Applets. The
differences between the two are explained in this unit. The concept of Java virtual
Machine makes this language platform independent. With this concept of Java virtual
machine we will move towards the programming of Java language. You can learn the
basic programming concept of Java and how you can compile and execute the Java
Application and Applet programs. To improve your programming concepts, you can
move towards the declaration and initiations of different data types and variables.
Similar to C, Java also contains operators. Those are explained at the end of this unit.

3.1 OBJECTIVES

After going through this unit, you should be able to:

• describe the strength of Java language;
• explain Java virtual machine concept;
• differentiate between Java applet and Java application;
• write simple programs in Java;
• compile and execute Java applets and application programs;
• describe the data types in Java, and
• declare and initialize of variables in the programs.

3.2 INTRODUCTION TO JAVA

Java was developed by a team of computer professionals under the guidance of James
Gosling at Sun Microsystems in 1991. They wanted to give a suitable name. Initially
they called it “oak” after seeing an oak tree from their window, but after some weeks
they were discussing another name and were sipping Java coffee, so one of them
suggested the name “Java”. Other than this there is no interesting story/reason about
its name Java. The only reason I can say is that its designers wanted to give a

 38

Object Oriented
Technology & Java

beautiful name to their beautiful language, just as all parents want to give a sweet
name to their sweet child.

Java is a simple (similar to C/C++), scalable (easy to integrate), object oriented (able
to program real life complexities), general purpose programming language with
powerful features, which can be used to develop a variety of applications from simple
web animations to high-end business applications that program hand-held devices,
microwave appliances, cross platform server applications, etc.

Java is a strongly typed language. This specification clearly distinguishes between
the compile time errors that must be detected at compile time and those that occur at
run time.

Generally a language is either compiled or interpreted, but Java is both compiled as
well as interpreted. First a Java program is complied and comes in the form of “Java
byte code” (which is an intermediate code). Then this Java byte code is run on
interpreter to execute a program. This byte code is the actual power of Java to make it
popular and dominating over other programming languages. We will discuss this topic
in more detail in a later section of this unit.

3.2.1 Basic Features

In the last decade Java has become very popular. There are many reasons why Java is
so popular and some of these reasons are explained here: carefully read all the
features of Java and try to realize its strength.

Platform Independent

Java is Platform independent. The meaning of platform here may be confusing for
you but actually this word is poorly defined. In the computer industry it typically
means some combination of hardware and system software but here you can
understand it as your operating system.

Java is compiled to an intermediate form called Java byte-code or simply byte code.
A Java program never really executes immediately after compilation on the host
machine. Rather, this special program called the Java interpreter or Java Virtual
Machine reads the byte code, translates it into the corresponding host machine
instructions and then executes the machine instruction. A Java program can run on
any computer system for which a JVM (Java Virtual Machine) and some library
routines have been installed. The second important part which makes Java portable is
the elimination of hardware architecture dependent constructs. For example, Integers
are always four bytes long and floating-point variables follow the IEEE 754.You don’t
need to worry that the interpretation of your integer is going to change if you move
from one hardware to another hardware like Pentium to a PowerPC. You can develop
the Java program on any computer system and the execution of that program is
possible on any other computer system loaded with JVM. For example, you can write
and compile the Java program on Windows 98 and execute the compiled program on
JVM of the Macintosh operating system. The same concept is explained in Figure 1
given below.

Source
program

BYTECODE

JVM3

JVM2

JVM1

 Java
Compiler

Figure 1: Compilation and execution of Java program

39

Java Language Basics Object Oriented

As you know that in objects represent object-oriented languages data. Objects have
two sections. The first is Data (instance variables) and the second is methods. Data
represents what an object is. A method represents what an object does. The Data and
methods are closely related to the real world structure and behavior of objects. Object
oriented programming has a number of advantages like. Simpler to read program,
efficient reuse of programming segments, robust and error-free code.

Java is a true object-oriented language, which provides a platform to develop an
effective and efficient application and program real life complexities. Java does not
allow methods without class, thus an application consists of only the object which
makes it true OOl. Most of the Object-oriented concepts in Java are inherited from
C++ which makes it easy for traditional programmers to understand it.

Easy to Learn

Java is easy to learn for programmers because it is (syntax) similar to C and C++ and
most of the complex parts of C/C++ have been excluded including operator
overloading, multiple inheritance and pointers. Approximately half of the bugs in
C and C++ programs are related to memory allocation and de-allocation. Therefore
the important addition in Java is automatic memory allocation and de-allocation.

Do not think Java is very simple, it is both a simple as well as complex language
depending on how you use it because Java has a wide range of applications, simple to
complex.

Robust

Java provides checking for possible problems at two levels, one at the compile time
and the other at the run time, so programs are highly reliable and eliminate situations
that are error-prone compared to C/C++. The best and worst features of C and C++ are
pointers that help in direct manipulation of memory addresses. The power of pointers
is as a great tool used by expert programmers for developing system software, driver,
etc. But many times pointers are the main cause of runtime errors because of
improper use of memory. Java eliminates pointer manipulation completely from the
language, and therefore eliminates a large source of runtime errors. Java programmers
need not remember to de-allocate memory in programs since there is a garbage
collection mechanism which handles de-allocation of memory. It provides powerful a
robust exception handling mechanism to deal with both expected and unexpected
errors at run time.

Secure

Java is intended to work in networked and distributed environments by providing
security. All the references to memory are symbolic references, meaning that the user
is not aware where in the memory program is present, it totally depends on the JVM
and machine on which the program is running. Each applet is loaded on its own
memory space, which avoids the information interchange between applets.

Java applets can be executed in run time environment that restricts them from
introducing viruses, deleting and modifying files in the host computer. The Java
enabled web browser checks the byte code of applets to ensure that it should not do
anything wrong before it will run the applet. Furthermore, Java is a strongly typed
language, which means that variables should be declared and variables should not
change types. Type casting are strictly limited highly sensible, therefore you can cast
an int to a long or you can cast a byte to a short but you cannot cast an int to a
boolean or an int to a String. The major security issue in today’s software world is

 40

Object Oriented
Technology & Java

BUGS. Unintended bugs are responsible for more data loss than data loss because of
viruses. In Java it is easier to write bug-free code then in other languages.

Multi-threaded

Before answering what is multithreading, let me explain you what ‘thread’ is.
Simply, a thread is a program’s path of execution. In your problems, when multiple
events or actions need to occur at the same time, how you will handle it? For example,
a program is not capable of drawing pictures when you keep pressing keys of the
keyboard. The program gives its full attention to receiving the keyboard input and
doesn’t draw the picture properly.

The best solution to this problem is the execution of two or more sections of a
program at the same time and this technique is known as multithreading.
Multithreaded applications deliver their potent power by running many threads
concurrently within a single program. A web browser, for instance, can print a file in
the background while it downloads a page in one window and formats the page as it
downloads. The ability of an individual program to do more than one thing at the
same time is most efficiently implemented through threads.

Java is inherently multi-threaded, for example garbage collection subsystem runs as a
low-priority thread. A single Java program can have many different threads executing
independently and continuously, for example, different Java applets on the same web
page can run together with getting equal time from the processor. Because
multithreaded applications share data and all threads of an application exists in the
same data space therefore to maintaining reliability is sometime difficult. To making
easy the use of threads Java offers features for synchronization between threads.

Dynamic

Java was designed to adapt to an evolving environment, therefore the Java compiler is
smart and dynamic. If you are compiling a file that depends on other non-compiled
files, then the compiler will try to find and compile them also. The compiler can
handle methods that are used before they’re declared. It can also determine whether a
source code has been changed since the last time it was compiled. In Java classes that
were unknown to a program when it was compiled can still be loaded into it at
runtime. For example, a web browser can load applets of other classes without
recompilation.

High Performance

As we know in Java we have to first compile the program, then execute it using Java
interpreter. In general, interpreters are slow, because an interpreter executes programs
instruction by instruction while Java is a fast-interpreted language. Java has also been
designed so that the run-time system can optimize their performance by compiling
bytecode to native machine code on the fly (execute immediately after compilation).
This is called “just in time” (JIT) compilation.

According to ‘Sun’ with JIT compilation, Java code can execute nearly as fast as
native compiled code and maintain its transportability and security but array bounds
checking are a problem of the natively compiled Java code. Many companies are an
working on native-machine-architecture compilers for Java. These will produce an
executable code that does not require a separate interpreter, and that is
indistinguishable in speed from C++.

Java offers two flavors of programming, Java applets and Java application. Applets
are small Java programs (mostly) that can be downloaded over a computer network
and run from a web page by using a Java enabled browser like Netscape / Microsoft
Internet Explorer. Applets used to add dynamic features like animation, sound etc. to
web pages.

41

Java Language Basics 3.2.2 Java Virtual Machine Concepts

When a Java program is compiled it is converted to byte code which is then executed
by the Java interpreter by translating the byte code into machine instructions.

Java interpreter is part of Java runtime environment. Byte code is an intermediate
code independent of any machine and any operating system. Program in Java run
time environment, which is used to interpret byte code, is called Java Virtual Machine
(JVM). The Java compiler reads Java language source files, translates the source into
Java byte codes, and places the byte codes into class files.

Any machine for which Java interpreter is available can execute this byte code. That’s
why Java is called Machine independent and Architecture neutral. Figure 2 shows
that Java compiler is accepting a Java program and producing its byte code. This byte
code can be executed on any operating system (Window-98, Macintosh, Linux etc.)
running on any machine with suitable Java interpreter of that machine.

 Byte code

Java program

Java
Compiler

Java
Interpreter for

Windows 98

Java
Interpreter for

Macintosh

Java
Interpreter for

Linux

Figure 2: Java is Machine Independent and Architecture Neutral

The JVM plays the main role to making Java portable. It provides a layer of
abstraction between the compiled Java program and the hardware platform and
operating system. The JVM is central to Java’s portability because compiled Java
programs run on the JVM, independent of whatever hardware is used.

 Check Your Progress 1

1) What is the meaning of “virtual” in Java virtual machine?

……………………………………………………………………………………

……………………………………………………………………………………

2) How can you say that Java is a secure programming language?
……………………………………………………………………………………

……………………………………………………………………………………

 42

Object Oriented
Technology & Java

3) What was the first name given to Java by its team?
……………………………………………………………………………………

……………………………………………………………………………………

In the next section let us see how you can develop a Java program on your own
machine. After developing a program try to run it on different machines so that you
can understand the meaning of machine Independence in practice.

3.2.3 A Simple Java Program

Java offers two flavors of programming, Java applets and Java application. It is
important to understand the basics of both flavors. Let us taste both cups of Java
programming one by one.

Java application Program

Let us write your first program with the file name “Application”. This program, after
successful compilation and run, prints the words “This is My First Java Program” on
your display. This program is very basic but the goal of this program is not to teach
you how to print words on your display but to tell you how to type, save, compile and
execute Java programs. In this section you can learn many issues that can go wrong
even if your source code is correct.

To create your own program you should follow the three steps given below. In the
next section you will get an explanation of each step in detail:

1. First of all using any text editor, type Java source file of your program as given

below.
2. Now compile the source file-using compiler named Java c that takes your

source file and translates its statements into a bytecode file.
3. Run the program using interpreter named Java that takes your bytecode file and

translates them into machine instructions that your computer can understand.

// Code start here…. don’t include these line numbers in your program

1. /* This is my First Java Application Save the file as Application.Java: same as class
name */
2. class Application
3. {
4. public static void main (String args[])
5. {
6. System.out.println(“This is My First Java Application”);
7. } // main ends here
8. }// Code ends here

Let us see the above program line by line.

Line 1. /* This is my First Java Program. Save this file as Application.Java same as
class name */

Comments in Java are similar to C++. Everything between /* and */ is ignored by the
compiler but Comments allow you to describe the details of the program. This is
useful for developing the understandability in your program.

Line 2. class Application

Second line in the program defines a class named Application using a keyword class.
After that, class definition is specified within curly braces. More about Java classes
you can read in Unit 1 Block 1 of this course.

43

Java Language Basics class Application
{
.
class definition
}
Line 4. public static void main (String args[])

Line number 3 is not important to discuss here as it contains only the separator. What
use is the separator you will see later.

“public static void main (String args[])” This is the point from where the program
will start the execution. This program starts the execution by calling main () method.
In this line public, static, and void all are keywords. May be you are thinking of the
meaning of ‘keyword’. Keywords are nothing but some reserved words, details you
will see in the later section of this unit.

The public keyword is used to control the access of various class members. If member
is public it can be accessed outside the class. So we have to declare main () as public
because it has to be invoked by the code outside the class when program is executed.
Static key word allows the main () method to be executed without creating an object
of that class, and void means main () method does not return any value.

Separators define the structure of a program. The separators used in Application are
parentheses, (), braces, { }, the period, ., and the semicolon, ;. Java contains six
separators and all are widely used by programmers. Let us see what the proper
meaning of each separator is.

Parentheses (), generally it encloses arguments in method definitions or calling and
used to delimits test expressions control statements.

Braces { }, defines blocks of code and it also defines automatically initializes arrays.
Square bracket [], declares array types.

Semicolons; are used to terminate statements.

Single coma “,” is use to separates successive identifiers in variable declarations.

Single dot “.” Selects a method from an object and separates package names from sub-
package and class names. And in last “:” is used in loop labels.

Line 6. System.out.println(“This is My First Java Application.”);

This line prints the string “This is My First Java Application”. In this line println ()
function is used to display this line. The println () function accepts any string and
display its value on console.

Typing and saving program

To write the program you need a text editor like Notepad, Brief, or vi or any other.
You should not use a word processor like Microsoft Word because word processors
save their files in a proprietary format and not in pure ASCII text. Now type the above
program into a new file but remember to type it exactly as it written here because Java
is case sensitive, so System is not the same as system and CLASS is not the same as
class. But white space is meaningless except inside string literals.

Assume we are using Notepad in windows. Save this program in a file called
Application.Java. Windows text editors Notepad add a three letter ".txt" extension to
all the files saved without informing user. You may get unexpectedly file called "
Application.Java.txt." because it in not “.Java” compiler will not compile this file. If
your editor has this problem, you can change to better editor.

 44

Object Oriented
Technology & Java

Compiling and running Application.Java

Before compiling ensure that your Java environment is correctly configured. To set
PATH and CLASSPATH see MCS 025 ‘s Java Programming section.
C:> Javac Application.Java
C:> Java Application
This is My First Java Application
C:>
Java compiler named Javac that takes your source file and translates its instructions
into a bytecode file. Java interpreter named Java that takes your bytecode file and
translates them into instructions that your computer can understand. When you
compile the program you need to use Application.Java but when you run the program
you need not use Application.class.

A Simple Java Applet

As you know Java programs can be classified into applets, application and servlets.
Java servlets are similar programs like applets except they execute on servers side.
Servlets are Java programs answer to traditional CGI programming. They are
programs that run on a Web server and build Web pages.

Now let us try to write a code for Java applet, When we write a program for applet,
we must import two Java groups. Import is a process to tell the compiler where to find
the methods of classes from library we will use in the program. These two important
groups are Java.awt and Java.applet. Java.awt is called the Java abstract windows tool
kit and Java.applet is the applet group.

To create an applet, which will display “Hello IGNOU”, follow the three steps that
are used for creating Java application as given below.

1. Create a Java source file.
2. Compile the source file.
3. Run the program.

Write the following Java source code into text editor and save as MyFirstApplet.Java

// Code start here… don’t include these line numbers in your program
1. import Java.applet.Applet;
2. import Java.awt.Graphics;
3. public class MyFirstApplet extends Applet
 {
4. public void paint (Graphics g)
 {
5. g.drawString("Hello IGNOU !", 50, 25);
6 }
7 } // please note in applets there is no ‘ main () ‘.
// code ends here….

Most of the symatx of this program is similar to previous the Java application program
you have just completed. The important steps for developing basic Java applet are
explained here step by step.

1. import Java.applet.Applet
2. import Java.awt.Graphics;

The above two lines import two important Java groups. Java.awt and Java.applet are
necessary whenever you develop applets. java .awt is called the Java abstract
windows tool kit and Java.applet is the applet group. Here in the code
java.applet.Applet is required to create an applet and java.awt.Graphics is required to
paint on the screen.

45

Java Language Basics 3. public class MyFirstApplet extends Applet

My First Applet is the executable class. It is public class and it extends applet class
which means that a programmer builds the code on the standard Applet class.

4. public void paint (Graphics g)

In our MyFirstApplet class we have defined paint. Method inside which we are using
object of Graphics class. Graphics class is available in Java, group Java.awt.

5. g.drawString ("Hello IGNOU !", 50, 25);

Now in this line drawString method is used to write “Hello Ignou!” message on the
screen. It is a method of Graphic class. This drawString takes three arguments. First
argument is a message and the other two are pixel positions on X-axis and Y-axis
respectively, from where the printing of the string on the screen will begin.

Compiling and running MyFirstApplet.Java

When Java applet is ready, we can compile it using Java compiler named ‘Javac’.

To compile this program write:
C:> Javac MyFirstApplet.Java

When compilation is over MyFirstApplet.class is created as an output of compilation.
To execute the program you have to create a HTML file which includes the given
applet class MyFirstApplet.class, and then run the applet using Web browser or applet
viewer.

For example:

<HTML>
<HEAD>
<TITLE> A Simple Applet </TITLE>
</HEAD>
<BODY>
Here is the output of my program:
<APPLET CODE=" MyFirstApplet.class" WIDTH=150
HEIGHT=50>
</APPLET>
</BODY>

</HTML>
When we open this HTML file using Internet Explorer, you will get window showing
the following

Here, the string “Hello IGNOU!” is displayed inside a window of size 150 pixel wide
and 50 pixel in height. You will find more detailed discussion on applet programming
in Unit 1 Block 4 of this course.

After getting flavors of both application and applet programming you will be thinking
that Java application programs and applets are similar but there are many differences
between them. What are these differences? The differences between them are given
below in Table 1.

 46

Object Oriented
Technology & Java

Table 1: Main differences between Java applets and application programs

Java Application Programs Java Applets

Java Application Program can be
executed independently. Applications
are executed at command line by
Java.exe

Applet cannot be executed independently.
Applets can only be executed inside a
Java compatible container, such as a
browser or appletviewer.

It contain main () method. It has a
single point for entry to execution

It does not contain main () method, and
does not have a single point of entry for
execution.

Applications have no inherent
security restrictions, and can perform
read/write to files in local System.

Applets cannot perform read/write
to files in local system
This is to provide security.

Applications have no special support
in HTML for embedding or
downloading

Applets can be embedded in HTML pages
and downloaded over the Internet

 Check Your Progress 2

1) Compile and Execute a Java Application that will display the statement “ I am

Learning Java”.
……………………………………………………………………………………

……………………………………………………………………………………

2) Compile and run a Java Applet of WIDTH=250 and HEIGHT=100, applet will
 display a message “ Soon I will write big programs in Java”.

……………………………………………………………………………………

……………………………………………………………………………………

3) What are the different arguments of ‘drawstring’?
……………………………………………………………………………………

……………………………………………………………………………………

Now you are able to write and execute your own simple programs but going in of
programming concepts you need to know the different Keywords and data types
available in Java. In the next two sections we will discuss different data types.

3.3 PRIMITIVE DATA TYPE AND VARIABLES

Java supports different primitive types given in Table 2 where each primitive data
type is given with its description, group and example.

Table 2: Java Primitive Types

Data Type Description Example Groups

Byte Byte-length integer 10, 24

Short Short integer 500, 786

Int Integer 89, 945, 37865

Integer

47

Java Language Basics
Long Long integer 89L, -945L

Float Single-precision
floating point 89.5f, -32.5f, Floating point

numbers

Double Double-precision
floating point

89.5, -35.5,
87.6E45

Char A single character ‘c’, ‘9’, ‘t’ Characters

Boolean A boolean value (0 or 1) True or false Boolean

In most of the languages, the format and size of primitive data types depend on the
platform on which a code is running. But in Java programming language, size and
format of its primitive data types is specified. So programmers need not worry about
the system-dependencies while using data types. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are
guaranteed to run without porting on any machine architecture. While strictly
specifying the size of an integer may cause a small loss of performance in some
environments, it is necessary in order to achieve portability. All the primitive data
types can be divided into four major groups as shown in Table”.

3.3.1 Java Keywords

A keyword or reserved word in Java has a special meaning and cannot be used as a
user defined identifier, because they are used by the compiler and if you use them as
variable names, compiler will generate errors. The following Table 3 gives a list of
Java keywords and their purpose in programming. These keywords cannot be used as
variable name or function name in any Java program.

Table 3: List of Java keywords

Keyword Purpose

abstract It declares that a class or method is abstract

assert Used to specify assertions

boolean Declares that variable is Boolean type

break Used to exit a loop before end of the loop is reached

byte Declares that variable is byte type

case To represent different conditions in switch statement

catch Used for handling exceptions, i.e., capture the exceptions thrown by
 some actions

char Declares that variable is character type

class Signals the beginning of a class definition

const This keyword is reserved by Java but now it is not in use

continue Prematurely return to the beginning of a loop

default Default action in switch statement

do Begins a do while loop

double Declares that variable is double type

 48

Object Oriented
Technology & Java else Signals the code to be executed when if condition executes to false

extends Specifies the class base from which the correct class is inherited

final Declares that a class may not be extended or that a field or method may
 not be overridden

finally Declares a block of code guaranteed to be executed

float Declares a floating point variable

for Start a for loop

goto This keyword is reserved by Java but now it is not in use

if Keyword to represent conditional statement

implements Declares that this class implements the given interface

import permits access to a class or group of classes in a package

Instance of tests whether an object is an instance of a class

int Declares an integer variable

interface signals the beginning of an interface definition

long Declares a long integer variable

native Declares that a method that is implemented in native code

new Allocates memory to an object dynamically

package Defines the package to which this source code file belongs

private Declares a method or member variable to be private

protected Declares a class, method or member variable to be protected

public Declares a class, method or member variable to be public

return Returns a value from a method

short Declares a short integer variable

static Declares that a field or a method belongs to a class rather than an object

strictfp

To declare that a method or class must be run with exact IEEE 754 semantics

super A reference to the parent of the current object

switch Tests for the truth of various possible cases

synchronized Indicates that a section of code is not thread-safe

this A reference to the current object

throws Declares the exceptions thrown by a method

transient Data should not be serialized

try Attempt an operation that may throw an exception

49

Java Language Basics
void Declare that a method does not return a value

volatile Warns the compiler that a variable changes asynchronously

while Begins a while loop

It is important that Java is case-sensitive, so even though break is a keyword, Break is
not a keyword at all.

For the C++ programmers case sensitivity in Java cause problems, but at the time of
designing Java its designers decided to make it case sensitive because first of all this
enhances the readability of cod, secondly it reduces the compilation time and
increases the efficiency of compiler. All the Java technology keywords are in lower
case. The words true, false, and null are reserved words. Keywords ‘const’ and ‘goto’
are currently not in use. In this list of Keywords the new Keywords have also been
added, for exapmle Java 1.2 adds the strictfp keyword to declare that a method or
class must run with exact IEEE 754 semantics. Java 1.4 adds the assert keyword to
specify assertions. Each keyword has a specific and well-defined purpose. The
following list explains the purpose and meaning of available keywords.

3.3.2 Integer and Floating Point Data Type

Integer & Floating-point numbers fall under Numeric datatypes. Java has six numeric
datatypes that differ in size and precision of the numbers they can hold. The Size
means how many bits are needed to represent the data type. The Range of a data type
expresses the precision of numbers.

Integers

Integers are whole numbers. Depending on range, as given in Table 4, integer data
type can be further divided into four categories:

Table 4: Four categories of Integer data types

Type Values Default Size Range

Byte signed integers 0 8 bits -128 to 127

Short signed integers 0 16 bits -32768 to 32767

Int signed integers 0 32 bits -2147483648 to 2147483647

Long signed integers 0 64 bits -9223372036854775808 to
9223372036854775807

Floating Point Numbers

A number containing a fractional part is called real number or floating point Number.
As given in Table 5, Real Number can also be divided into two categories: float and
double. But double is used where more accuracy is required for fractional part.

Table 5: Two categories of real numbers

Type Values Default Size Range

 50

Object Oriented
Technology & Java

float IEEE 754
floating point 0.0 32 bits

+/-1.4E-45 to +/-
3.4028235E+38,

+/-infinity, +/-0, NAN

double IEEE 754
floating point 0.0 64 bits

+/-4.9E-324 to
+/-

1.7976931348623157E+308,
+/-infinity, +/-0, NAN

3.3.3 Character and Boolean Types
Characters

A char is a single character that is a letter, a digit, a punctuation mark, a tab, a space or
something similar. A char literal is a single one character enclosed in single quotes
like
char myCharacter = ‘a’;
char doublequote = ‘ ” ’;

The character datatype, char, holds a single character. Each character is a number or
character code that belongs to a character set, an indexed list of symbols. For
Example, ASCII (American Standard Code for Information Interchange) is a
character set. In ASCII character set ranges from 0 to 127 and needs 8 bit to represent
a character. Different attributes of character data type are given the Table 6.

Java uses the Unicode character set. Unicode defines a fully international character set
that can represent all of the characters found in all human languages and writing
systems around the world such as English, Arabic, Chinese, etc. Since there are a
large number of languages, therefore a large set is a required and 8 bits, are not
sufficient. This 16-bit character set fulfills the need. Thus, in Java char is a 16-bit
type.

Table 6: Character data type

Type Values Default Size Range

Char Unicode character \u0000 16 bits \u0000 to \uFFFF

Booleans

In Java’ Booleans are logical variables, which can contain the value either true or
false. Any other value cannot be assigned to a Boolean variable. Different attributes of
Boolean data type are given in Table 7.

Table 7: Boolean data type

Type Values Default Size Range

Boolean True, False False
1 bit used
in 32 bit
integer

NA

3.3.4 Declaring and Initialization Variables

51

Java Language Basics Variables (Identifiers)

A variable is a basic unit of storage in a Java Program. Variables represent memory
location in which value can be stored. Before using any variable, you have to declare
it. After it is declared, you can then assign values to it (you can also declare and assign
a value to a variable at the same time.)

Java actually has three kinds of variables:

• Instance variables
• Class variables
• Local Variables.

Instance variables are used to define the attributes of a particular object. Class
Variables are similar to instance variables, except their values apply to all the
instances of a class (and to the class itself) rather than having different values for each
object. Local variables are declared and used inside methods, for example, for index
counters in loops, temporary variables or to hold values that you need only inside the
method definition itself.

Variable Declarations

Before using any variable, it must first be declared. A variable declaration specifies
the datatype, the variable name and, optionally, the default value for the variable. A
general variable declaration looks like the following:

datatype identifier [= default value] {, identifier [= defaultvalue] };
Consider the following examples for variable declaration:
byte b; short age;
boolean male;
Declare multiple variables of one type in one expression such as in the following
example:
int age, enrollnum, numChildren;

Variable declarations can be put anywhere in your code, as long as they precede the
first use of the variable. However, it is common practice to place the declarations at
the top of each block of code. Variable names in Java can only start with a letter, an
underscore (_), or a dollar sign ($). They cannot start with a number. After the first
character, your variable names can include letters or numbers or a combination of
both.

As you know, the Java language is case sensitive which implies that the variable x in
lowercase is different from variable X in uppercase. In Java a variable name cannot
start with a digit or hyphen. Variable names should help you understand what is
happening in your program. Thus, it is useful to name your variables intelligently or
according to its role in the program

The main restriction on the names you can give your variables is that they cannot
contain any white space. There is no limit to the length of a Java variable name.

If you want to begin variable name with a digit, prefix underscore, with the name,
e.g. _9cats. You can also use the underscore to act like a space in long variable names.

Variable Assignment and Initialization

Once you have declared the type of a variable, you can initialize it with some value.
variable name = some value.
For example, consider the following example:
int year;
year = 28; // here the value 28 is assigned to the variable ‘year’

 52

Object Oriented
Technology & Java

Dynamic Initialization

We have seen how variables can be declared and assigned a value. However, we can
declare and assign a value to the variable in a single statement. This is called
Dynamic initialization. Variables can be dynamically initialized using any
expression valid at the time the variable is declared. This can be made clearer by
looking at the example code given below:
// Demonstrate dynamic initialization.

/* This Program calculates the hypotenuse of a triangle with height of the triangle, h
base b, using formula: square root of [square of height h + square of base b] */

 class DynamicInitialization {
 public static void main (String args [])
 {
 double h = 3.0, b = 4.0;
 double c = Math.sqrt(h*h + b*b); // here c is dynamically

initialized
 System.out.println (“ Hypotenuse is ” + c);
 }
)

Here, in this code, the variables h and b are declared and initialized to some values in
a single statement. Then you find in the next line that another variable c, is declared as
double and is assigned the output of an expression. The expression uses the sqrt()
function which is one of the Java’s built-in methods of the Math class.

The key point here is that the initialization expression may use any element valid at
the time of initialization, including calls to methods, other variables, or literals.
Literals

Literals are nothing but pieces of Java code that indicate explicit values. For example
"Hello IGNOU!" is a String literal. The double quote marks indicate to the compiler
that this is a string literal. The quotes indicate the start and the end of the string, but
remember that the quote marks themselves are not a part of the string. Similarly,
Character Literals are enclosed in single quotes and it must have exactly one
character. TRUE and FALSE are boolean literals that mean true and false. Number,
double, long and float literals also exits there. See examples of all types of literals in
the following Table 8.

Table 8: Examples of literals

 Types of literal Example

Number Literals -45, 4L, 0777, 0XFF, 2.56F, 10e45, .36E-2

Boolean Literals TRUE, FALSE

Character Literals 'a', '#', '3', \n, \\, \"

String Literals "A string with a \t tab in it”

Double Literals 1.5, 45.6, 76.4E8

Long Literals 34L

Float Literals 45.6f, 76.4E8F, 1.5F

Constants

53

Java Language Basics Constants are used for fixed values. Their value never changes during the program
execution. To declare constants in Java keyword final is used. The following
statement defines an integer constant x containing a value of 10.

final int x =10;

Identifiers

In simple words Identifiers are nothing but the names of variables, methods, classes,
packages and interfaces. In the Application program, String, args, main and
System.out.println are identifiers. Identifiers must be composed of letters, numbers,
the underscore ‘_’ and the dollar sign $. But identifiers should begin with a letter, the
underscore or a dollar sign.

 Check Your Progress 3

1) Write a program in Java to calculate the area and the circumference of a circle.
Show the use of ‘final’ keyword in your program
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What are the kinds of variables in Java? What are their uses?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Why are the following are unacceptable as Java integer constant.

a. 2,145

b. –8.62

c. 146E32

d. 54-

4) Why is abstract keyword but Abstract is not?

……………………………………………………………………………………

…….……………………………………………………………………………..

……………………………………………………………………………………

……………………………………………………………………………………

In the next section we will explore the different types of operators in Java with their
meaning and uses in the programs.

3.4 JAVA OPERATORS

Arithmetic operators

You must be friendly with arithmetic expressions in mathematics like ‘A – B’. In this
expression A and B are operands and the subtraction sign ‘ – ‘ is the operator. The
same terminology is also used here in the programming language. The following table
lists the basic arithmetic operators provided by the Java programming language along
with the description and uses. Here in the Table A and B are the operands. Operators

 54

Object Oriented
Technology & Java

are divided into two categories Binary and Unary. Addition, subtraction,
multiplication etc. are binary operators and applied only on two operands. Increment
and decrement are unary operators and applied on single operand.

Table 9A: Description of arithmetic operators

Binary Operators

Operator Use Description

+ A + B Adds A and B

- A - B Subtracts B from A

* A * B Multiplies A by B

/ A / B Divides A by B

% A % B Computes the remainder of dividing A
by B

Unary Operators

Operator Use Description

++ “Post-increment” A++

Post-increment: The value is assigned
before the increment is made, e.g.

 A = 1;
 B = A++;

Then B will hold 1 and A will hold 2

-- “Post-decrement” A--

Post-decrement: The value is assigned
before the decrement is made, e.g. :

 A = 1;
 B = A--;

Then B will hold 1 and A will hold 0.

++ “Pre-increment”

++A

Pre-increment: The value is assigned
after the increment is made, e.g.

 A = 1;
 B = ++A;

Then B will hold 2 and A will hold 2.

-- “Pre-decrement”
--A

Pre-decrement: The value is assigned
after the decrement is made, e.g.

 A = 1;
 B = --A;

Then B will hold 0 and A will hold 0.

Maybe you are thinking here that in the list we don’t have any operator for
exponentiation. If you want to do exponentiation you should import Java.lang class
where math is subclass. Inside math class you have one function ‘pow’ similar to C++
which can be used for exponentiation. All the above operators can be used only on
numeric values except for +, which is also used to concatenate strings.

55

Java Language Basics Assignment Operators

The basic assignment operator ‘=’ is used to assign value to the variables. For
example A = B; in which we assign value of B to A. Similarly, let us see how to
assign values to different data types.

int Integer = 100; float Float = 10.5; char Chararcter = 'S'; boolean aboolean = true;

With basic assignment operator, the Java programming language defines short cut
assignment operators that allow you to perform arithmetic, shift, or bitwise operation
with one operator.

Now let us see, if you want to add a number to a variable and assign the result back
into the same variable, so you will write something like i = i + 2; but using shortcut
operator ‘+=’ You can shorten this statement, like i += 2. But remember, i = i + 2; and
i += 2; both statements are the same for the compiler. As given in
Table10, Java programming language provides different short cut assignment
operators:

Table 10: Use of short cut assignment operators

Assignment Operators
Operator Use Equivalent to

+= A += B A = A + B
-= A -= B A = A – B
*= A *= B A = A * B
/= A /= B A = A / B

%= A %= B A = A % B
&= A &= B A = A & B
|= A |= B A = A | B
^= A ^= B A = A ^ B

<<= A <<= B A = A << B
>>= A >>= B A = A >> B

>>>= A >>>= B A = A >>> B

Multiple Assignments

Multiple assignments are possible in the following format:
Identifier= Identifier B= Identifier C=……….=expression
In this case all the identifiers are assigned the value of expression. Lets see one
example:

A=B=786+x+y+z; this is the same if you write: A=786+x+y+z; and B=786+x+y+z;
Relational Operators
Relational operators also called, comparison operators, are used to determine the
relationship between two values in an expression. As given in Table 11, the return
value depends on the operation.

 Table 11: Use of relational operators

Relational operators

Operator Use Returns true if

> A > B A is greater than B

>= A >= B A is greater than or equal to B

 56

Object Oriented
Technology & Java < A < B A is less than B

<= A <= B A is less than or equal to B

== A == B A and B are equal

!= A != B A and B are not equal

Boolean Operators

Boolean operators allow you to combine the results of multiple expressions to return a
single value that evaluates to either true or false. Table 12 describes the use of each
boolean operator.

Table 12: Description of Boolean operators

Boolean Operators

Operator Use Description

&& A && B

Conditional AND :If both A and B are true, result is true.
If either A or B are false, the result is false. But if A is
false, B will not be evaluated.
For example, (A > 4 && B <= 10) will evaluate to true if
A is greater than 4, and B is less than or equal to 10.

|| A || B

Conditional OR: If either A or B are true, the result is
true. But if A is true, B will not be evaluated.
For example, (A > 10 || B > 10) will evaluate to true if
either A or B are greater than 10.

! ! A Boolean NOT: If A is true, the result is false. If A is
false, the result is true.

& A & B

Boolean AND: If both A and B are true, the result is true.
If either A or B are false, the result is false and both A
and B are evaluated before the test.

| A | B Boolean OR: If either A or B are true, the result is true.
Both A & B are evaluated before the test.

^ A ^ B

Boolean XOR: If A is true and B is false, the result is
true. If A is false and B is true, the result is true.
Otherwise, the result is false. Both A and B are evaluated
before the test.

Bitwise operators
As you know in computers data is represented in binary (1’s and 0’s) form. The
binary representation of the number 43 is 0101011. The first bit from the right to left
in the binary representation is the least significant bit, i.e. here value is 1. Each
Bitwise operator allows you to manipulate integer variables at bit level. Table 13
given below describes the use of bitwise operator with help of suitable example for
each. Similarly, the use of class and object operators is given in Table 14.

57

Java Language Basics Table 13: Description and use of Bitwise operators

Bitwise operators

Operator Use Description

>> A >> B

Right shift: Shift bits of A right by distance B, 0 is
introduced to the vacated most significant bits, and
the vacated least significant bits are lost. The
following shows the number 43-shifted right once
(42 >> 1).

0101011 43
0010101 21

<< A << B

Left shift: Shift bits of A left by distance B , the most
significant bits are lost as the number moves left, and
the vacated least significant bits are 0. The following
shows the number 43 shifted left once (42 << 1).

0101011 43
1010110 86

>>> A >>> B
Right shift unsigned: Shift A to the right by B bits.
Low order bits are lost. Zeros fill in left bits
regardless of sign example.

~ ~B

Bitwise complement: The bitwise Complemnt
changes the bits. 1, into 0, and bit 0, to 1.
The following shows the complement of number 43.

0101011 43
1010100 84

& A & B

Bitwise AND: AND is 1 if both the bits are 1
otherwise AND is 0. The bitwise AND is true only if
both bits are set.
Consider 23 & 12:

10111 23
01100 12
00100 4

| A | B

Bitwise OR: The bitwise OR is true if either bits are
set. Or if the bit is 1 if either of the two bits is 1,
otherwise it is 0.
Consider 23 | 12:

10111 23
01100 12
11111 31

 58

Object Oriented
Technology & Java

^ A ^ B

Bitwise Exclusive OR: The bitwise Exclusive OR is
true if either bits are set, but not both. XOR of the
bits is 1 if one bit is 1 & other bit is 0, otherwise, it is
0.

Consider 23 ^ 12:

10111 23
01100 12
11011 27

Class and Object Operators

Table 14: Class and Object Operators

Operator Name Description

 instance of Class Test
Operator

The first operand must be an object
 reference. For example ‘A instance of
B’, Returns true if A is an instance of B.
Otherwise, it return false.

 new Class
Instantiation

Creates a new object. For example: new
A, in this A is either a call to a
constructor, or an array specification.

"."
Class

Member
Access

It accesses a method or field of a class
or object. For example A.B used for
‘field access for object A’ and A.B()
used for ‘method access for object A’

() Method
Invocation

For example: A(parameters) , Declares
or calls the method named A with the
specified parameters.

(type) Object
Cast

(type) A, in this example () operator
Cost (convert) A to specific type. An
exception will be thrown if the type of A
is incompatible with specified type. In
this type can be object or any primitive
data type.

Other Operators

There are some other operators that cannot fit in the above categories but are very
important for programmers. These operators are explained in Table 15 given below.

Table 15: Other operators

Operator Use Description

?: A ? B : C If A is true, returns B. Otherwise, returns C.

[] type [] Declares an array of unknown length, which
contains type elements.

[] type[A] Creates and array with A elements. Must be
used with the new operator.

[] A[B] Accesses the element at index B within the

59

Java Language Basics array A. Indices begin at 0 and extend through
the length of the array minus one.

+ A+B

This binary operator concatenates one string
to another. For example:
 String str1 = "IG";
 String str2 = "NOU";
 String str3 = str1 + str2
results in str3 holding "IGNOU".

 Check Your Progress 4

1) What is a literal? How many types of literals are there in Java?

……………………………………………………………………………………

……………………………………………………………………………………

2) What is synchronization and why is it important?
……………………………………………………………………………………

……………………………………………………………………………………

3) What is the difference between the Boolean & operator and the & operator?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

4) What is the difference between a “compiler” and an “interpreter”?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3.5 SUMMARY

In this unit you learnt that Java was developed by SUN Microsystems in 1991 under
the guidance of James Gosling. It’s an Object Oriented, general-purpose programming
language. After its birth it became popular because of many reasons like security,
robustness and multithreadedness but mainly because of its characteristic of
Architecture Neutral and platform independent. The logic and magic behind its
platform independence is “BYTECODE”. Java offers two flavors of programming,
Java application and Java applet. Application can be executed independently while
applet cannot be executed independently. When we compile a Java program we get
Java bytecode (.class file) that can be executed on any other computer system,
equipped with Java interpreter. To execute applets you can use applet viewer or
explorer to run Java embedded HTML code.

You learnt the meaning of different Java keywords which have special meaning for
compiler and cannot be used as a user defined identifier. Java supports eight primitive
data types which can be classified into four categories. Each data type has its memory
size and range of values it can store. Before using the Java variables in your program
you should declare them and assign them some value. You learnt how to declare a
variable dynamically with the help of an example. You have learnt different types of
operators in the last section of this unit which are similar to C++ so you must be
familiar with some of them. You must be tired after reading a long unit so now you
can go and have a cup of coffee. In the next unit we will discuss about the classes and
objects in Java.

 60

Object Oriented
Technology & Java 3.6 SOLUTIONS /ANSWERS

Check Your Progress 1
1) Java Virtual Machine plays very important role in making Java portable and it

executes the byte code generated by Java compiler. Java compiler translates
Java program into a form called byte code. This byte code is kind of machine
language for hypothetical machine or virtual machine. The name given ‘virtual’
is analysis to old system where compiler generates language which is
understandable by hardware. In Java, compiler generates a language which is
understandable by an imaginary machine which does not exist in hardware but
is a software machine.

2) Java was designed for networking and a distributed environment so security was

a major issue at the time of its development. Following are the two main
characteristics that make Java secure.

• All the references to memory are ‘symbolic references’ which means that

users do not know where the program is residing in memory and allocation
of memory to program is totally handled by JVM of each machine.

• Java applets execute in runtime environment that restrict the intruder applet
to spread virus and deleting and modifying files in host machine.

3) After developing Java language its team wanted to give a suitable name. They
used to see an oak tree from their window and they thought to give the same
name “Oak” to their new born language.

Check Your Progress 2
1) First of all using the text editor type Java source file of your program as given

below. Save the file as Display Message.Java .
/* This is a program for simple display of message on output terminal */

 class DisplayMessage
 {
 public static void main(String args[])
 {
 System.out.println(“I am Learning Java ”);
 }
 }
Now compile the source file-using compiler named Javac that takes your source file
and translates its statements into a bytecode file.

C:> Javac DisplayMessage.Java

Run the program using interpreter named Java that takes your bytecode file and
translates it them into instructions that our computer can understand.

C:> Java Display Message

2)
i. Write the following Java source code into text editor and save as

BigProgram.Java

import Java.applet.Applet;
import Java.awt.Graphics;
public class BigProgram extends Applet {
public void paint(Graphics g) {

61

Java Language Basics g.drawString("Soon I will write big programs in Java ", 50, 25);
 }

. }

ii. Compile the source file: Javac BigProgram.Java (This will generate

BigProgram.class)

iii. Execute the Applet: include the code in HTML code.

HTML>
<HEAD>

<TITLE> A Big Program </TITLE>
</HEAD>
<BODY>
Here is the output of my program:
<APPLET CODE=" BigProgram.class " WIDTH=250 HEIGHT=100>
</APPLET>
</BODY>
</HTML>

3) This drawString takes three arguments the first is message and the other two are

pixal positions X-axis and Y-axis respectively.
For example; g.drawString("Hello IGNOU !", 50, 25);
Here, in the example,” Hello IGNOU! Message is first argument, 50 and 25 are
other two arguments that define X-position and Y-position where the message
will be displayed.

Check Your Progress 3
1) If we get the error “ Exception in thread "main"

Java.lang.NoClassDefFoundError”, this means Java is unable to find bytecode file.
Java tries to find bytecode file in current directory. So, if bytecode file is in C:\Java,
we should change our current directory to that. The prompt should change to
C:\Java>.

If still there is a problems, in this case may be CLASSPATH environment variable is
not set up properly. You can set your CLASSPATH environment variable using DOS
command like

C:\> SET CLASSPATH=C:\JDK\JAVA\CLASSES;c:\Java\lib\classes.zip

// program to calculate area of circle and circumference of circle.

class AreaTriangle {
 public static void main (String args [])
 {
 final double pi = 3.14159; // pi is defined as final here

 double radius = 4.0;
 double circumference = 2*pi*radius; // here c is dynamically
 initialized double area = pi*radius*radius;
 System.out.println (“circumference of circle of radius 4 unit is
 ” + circumference);
 System.out.println (“Area of circle of radius 4 unit is ” +area);

 }
 }

2) Java has three kinds of variables, namely, the instance variable, the local variable

and the class variable.

 62

Object Oriented
Technology & Java

• Local variables are used inside blocks as counters or in methods as temporary
variables to store information needed by a single method.

• Instance variables are used to define attributes or the state of a particular

object and are used to store information needed by multiple methods in the
objects.

• Class variables are global to a class and to all the instances of the class. They

are useful for communicating between different objects of the same class or
keeping track of global states.

3) The given integer constants are unacceptable because:

a. The comma is not allowed in the integer.
b. The decimal point is not allowed in integers constants.
c. The character E is not allowed in integer constant.
d. The symbol ’–‘ can appear in front of integer constant not in last or

in-between.

4) Because Java is case-sensitive, so even though abstract is a keyword but

Abstract is not a keyword at all.

Check Your Progress 4

1) A literal represents a value of a certain type where the type describes how that

value behaves.

There are different types of literals namely number literals, character literals, boolean
literals, and string literals.

2) With respect to multithreading, synchronization is the capability to control the

access of multiple threads to shared resources. Without synchronization, it is
possible for one thread to modify a shared object while another thread is in the
process of using or updating that object’s value. This often leads to significant
errors.

3) If an expression involving the Boolean & operator is evaluated, both operands

are evaluated. Then the && operator is applied to the operand. When an
expression involving the & operator is evaluated, the first operand is evaluated.
If the first operand returns a value of true then the second operand is evaluated.
The && operator is then applied to the first and second operands. If the first
operand evaluates to false, the evaluation of the second operand is skipped.

4) Compilers and interpreters have similar functions: They take a program written

in some programming language and translate it into machine language. A
compiler does the translation all at once. It produces a complete machine
language program that can then be executed. An interpreter, on the other hand,
just translates one instruction at a time, and then executes that instruction
immediately. (Java uses a compiler to translate Java programs into Java
Bytecode, which is a machine language for the imaginary Java Virtual Machine.
An interpreter then executes Java Bytecode programs.)

	UNIT 3 JAVA LANGUAGE BASICS
	StructurePage Nos.
	3.2.1 Basic Features
	In the last decade Java has become very popular. There are many reasons why Java is so popular and some of these reasons are explained here: carefully read all the features of Java and try to realize its strength.
	Java program
	Typing and saving program
	
	
	
	
	
	
	Integers

	Floating Point Numbers
	
	
	
	
	
	
	Characters

	Variables (Identifiers)

	Variable Declarations
	Dynamic Initialization
	
	
	
	Literals

	Identifiers
	Arithmetic operators
	
	
	Binary Operators

	Assignment Operators
	Relational Operators
	Relational operators
	Boolean Operators
	Bitwise operators
	
	
	
	Class and Object Operators

	Other Operators

