
 

 

45

Strings and Characters  

UNIT 3   STRINGS AND CHARACTERS  

Structure  Page Nos. 

3.0 Introduction 45 
3.1 Objectives 45  
3.2 Fundamentals of Characters and Strings 45  
3.3 The String Class 48 
3.4 String Operations 48 
3.5 Data Conversion using Value Of( ) Methods 52 
3.6 StringBuffer Class and Methods 54 
3.7 Summary 58  
3.8 Solutions/Answers 59  
 

3.0  INTRODUCTION  

In programming we use several data types as per our needs. If you observe throughout 
your problem solving study next to numeric data types character and strings are the 
most important data type that are used. In many of the programming languages strings 
are stored in arrays of characters (e.g. C, C++, Pascal, ...). However, in Java strings 
are a separate object type, called String. You are already using objects of String type 
in your programming exercises of previous units. A string is a set of character, such as 
“Hi”. The Java platform contains three classes that you can use when working with 
character data: Character, String and StringBuffer. Java implements strings as object 
of String class when no change in the string is needed, and objects of StringBuffer 
class are used when there is need of manipulating of in the contents of string. In this 
unit we will discuss about different constructors, operations like concatenation of 
strings, comparison of strings, insertion in a string etc. You will also study about 
character extraction from a string, searching in a string, and conversion of different 
types of data into string form. 
 

3.1  OBJECTIVES 
 
After going through this unit you will be able to:  

• explain Fundamentals of Characters and Strings;  
• use different String and StringBuffer constructors;  
• apply special string operations; 
• extract characters from a string; 
• perform such string searching & comparison of strings; 
• data conversion using valueOf ( ) methods, and 
• use StringBuffer class and its methods. 
 

3.2  FUNDAMENTALS OF CHARACTERS AND 
STRINGS  

Java provides three classes to deal with characters and strings. These are:  
 
Character: Object of this class can hold a single character value. This class also 
defines some methods that can manipulate or check single-character data.  
 
String:  Objects of this class are used to deal with the strings, which are unchanging 
during processing. 



 

 46 

Multithreading, I/O, and 
String Handling 

String Buffer: Objects of this class are used for storing those strings which are 
expected to be manipulated during processing. 
 
Characters 

An object of Character type can contain only a single character value. You use a 
Character object instead of a primitive char variable when an object is required. For 
example, when passing a character value into a method that changes the value or when 
placing a character value into a Java defined data structure, which requires object. 
Vector is one of data structure that requires objects.  
 
Now let us take an example program to see how Character objects are created and 
used. 
 
In this program some character objects are created and it displays some information 
about them.  
 
//Program 
public class CharacterObj 
{ 
public static void main(String args[])  
{ 
Character Cob1 = new Character('a'); 
Character Cob2= new Character('b'); 
Character Cob3 = new Character('c'); 
int difference = Cob1.compareTo(Cob2); 
if (difference == 0) 
System.out.println(Cob1+"   is equal to  "+Cob2); 
else 
System.out.println(Cob1+"  is not equal to  "+Cob2); 
System.out.println("Cob1 is " + ((Cob2.equals(Cob3)) ? "equal" : "not equal")+ " to 
Cob3."); 
} 
} 
 
Output: 
a is not equal to b 
Cob1 is not equal to Cob3. 
 
In the above CharacterObj program following constructors and methods provided by 
the Character class are used. 
   
Character (char): This is the Character class only constructor. It is used to create a 
Character object containing the value provided by the argument. But once a Character 
object has been created, the value it contains cannot be changed.  
 
Compare to (Character): This instance method is used to compare the values held 
by two character objects. The value of the object on which the method is called and 
the value of the object passed as argument to the method. 
 
For example, the statement        
 
int difference = Cob1.compareTo(Cob2), in the above program.  
 
This method returns an integer indicating whether the value in the current object is 
greater than, equal to, or less than the value held by the argument.  



 

 

47

Strings and Characters  Equals (Character):  This instance method is used to compare the value held by the 
current object with the value held by another (This method returns true if the values 
held by both objects are equal) object passed as on argument. 
 
For example, in the statement  
 
Cob2.equals(Cob3)  
value held by object Cob2 and the value held by Cob3 will be compared. 
 
In addition to the methods used in program CharacterObj, methods given below are 
also available in Character class. 
 
To_String (): This instance method is used to convert the object to a string. The 
resulting string will have one character in it and contains the value held by the 
character object.  
 
Char_Value(): An instance method that returns the value held by the character object 
as a primitive char value.  
 
IsUpperCase (char): This method is used to determine whether a primitive char 
value is uppercase or not. It returns true if character is in upper case.  
 
String and StringBuffer Classes 

Java provides two classes for handling string values, which are String and  

Can you tell why two String Classes?  
 
The String class is provided for strings whose value will not change. For example, in 
program you write a method that requires string data and it is not going to modify the 
string. 
  
The StringBuffer class is used for strings that will be modified. String buffers are 
generally used for constructing character data dynamically, for example, when you 
need to store information, which may change. 
 
Content of strings do not change that is why they are more efficient to use than string 
buffers. So it is good to use String class wherever you need   fixed-length objects that 
are immutable (size cannot be altered). 
  
For example, the string contained by myString object given below cannot be changed.  
String myString = “This content cannot be changed!”. 
 

 Check Your Progress 1 
 
1) Write a program to find the case (upper or lower) of a character. 
 

……………………………………………………………………………

…………………………………………………………………………… 

 
2) Explain the use of equal () method with the help of code statements. 
 

……………………………………………………………………………………

…………………………………………………………………………………… 

…………………………………………………………………………………… 



 

 48 

Multithreading, I/O, and 
String Handling 

3) When should StringBuffer object be preferred over String object? 
 

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

…………………………………………………………………………………… 

3.3  THE STRING CLASS 

Now let us discuss String class in detail. There are many constructors provided in Java 
to create string objects. Some of them are given below. 

public String(): Used to create a String object that represents an empty character 
sequence. 
 
public String(String value): Used to create a String object that represents the same 
sequence of characters as the argument; in other words, the newly created string is a 
copy of the string passed as an argument. 
 
public String(char value[]): New object of string is created using the sequence of 
characters currently contained in the character array argument. 
 
public String(char value[], int offset, int count): A new string object created  
contains characters from a sub-array of the character array argument. 
 
public String(byte bytes[], String enc) throws Unsupported Encoding Exception: 
Used to construct a new String by converting the specified array of bytes using the 
specified character encoding. 
 
public String(byte bytes[], int offset, int length): Used to create an object of  String 
by converting the specified sub-array of bytes using the platform’s default character 
encoding. 
 
public String(byte bytes[]): Used to create  an object of  String by converting the 
specified array of bytes using the platform’s default character encoding. 
 
public String(StringBuffer buffer) : Used to create an object of  String  by  using 
existing  StringBuffer object which is  passed as  argument. 
 
String class provides some important methods for examining individual characters of 
the strings, for comparing strings, for searching strings, for extracting sub-strings, and 
for creating a copy of a string with all characters translated to uppercase or to 
lowercase. 
  
The Java language also provides special support for the string concatenation operator 
(+), and for conversion of other objects to strings.  
 
Note: When you create a String object, and, if it has the same value as another object, 
Java will point both object references to the same memory location.  
 

3.4  STRING OPERATIONS 
 
String class provides methods for handling of String objects. String class methods can 
be grouped in index methods, value Of () methods and sub-string methods. Methods 
of these groups are discussed below: 



 

 

49

Strings and Characters  
 Index Methods 

 
Methods      Return 
public int length()       Return the length of string. 
public int indexOf(int ch) Return location of first 

occurrence of ch in string, if 
ch don’t exist in string return 
–1. 

public int indexOf(int ch, int fromIndex) Return location of 
occurrence of ch in string 
after fromIndex, if ch don’t 
exist in string return –1. 

   
public int lastIndexOf(int ch)  Return location of last 

occurrence of ch in string, if 
ch location does not exist in 
string return –1.                                                                              

 
public int lastIndexOf(int ch, int fromIndex) Return last of occurrence of 

ch in string after location  
fromIndex, if ch does not 
exist in string after  
location fromIndex   
return –1. 

 
public int indexOf(String str) Return location of first 

occurrence of substring str in 
string, if  str does not exist in 
string  return –1.                                                                         

 
public int indexOf(String str, int fromIndex)  Return location of first 

occurrence of substring str in 
after location fromIndex  
string, if str does not exist in 
string  return –1.                                                                   

                                                                                      
public int lastIndexOf(String str) Return location of last 

occurrence of substring str in 
string , if  str does not exist 
in string  return –1. 

                                                                                     
public int lastIndexOf(String str, int fromIndex)  Return location of last 

occurrence of substring str in 
after location from Index  
string, if  str does not exist in 
string  return –1. 

  
You can see in the example program given below, in which the index methods are 
used. This program will help you to know the use of index methods. 
 
public class Index_Methods_Demo  
{ 
public static void main(String[] args)  
{ 
String  str =  "This is a test string"; 
System.out.println(" The length of str is :"+ str.length()); 
System.out.println("Index of 't' in str is:"+str.indexOf('t')); 



 

 50 

Multithreading, I/O, and 
String Handling 

// Print first occurrence of character t in string 
System.out.println("First occurrence of 't' after  13 characters in the str:"+ 
str.indexOf('t',12)); 
// Print first occurrence of character t in string after first 13 characters 
System.out.println("Last occurrence of 'z' in the str:"+ str.lastIndexOf('z')); 
// Print Last  occurrence of character z in string : See output and tell 
// what is printed because 'z' is not a character in str. 
System.out.println("First occurrence of substring :is substring of string  str:"+ 
str.indexOf("is")); 
// Print first occurrence of substring "is" in str  
System.out.println("Last occurrence of substring :ing in the str:"+ 
str.lastIndexOf("ing")); 
// Print first occurrence of substring "ing" in string str 
System.out.println("First occurrence of substring :this after  11 characters in the str:"+ 
str.indexOf("this",10)); 
// Print first occurrence of substring "this" after first 11 characters in string str 
} 
} 
} 
Output: 
The length of str is :21 
Index of 't' in str is:10 
First occurrence of 't' after  13 characters in the str:13 
Last occurrence of 'z' in the str:-1 
First occurrence of substring :is substring of string  str:2 
Last occurrence of substring :ing in the str:18 
First occurrence of substring :this after  11 characters in the str:-1 
 
In the output of the above given program you can see that if a character or substring 
does not exist in the given string then methods are returning: –1. 
 
Now let us see some substring methods, comparisons methods, and string modifying 
methods provided in string class. These methods are used to find location of a 
character in string, get substrings, concatenation, comparison of strings, string reasons 
matching, case conversion etc. 
 
Substring Methods 
 
public char charAt(int index)  Return character at position i in 

string. 
 

   0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 21 
 

M A N O J  K U M A R  I G N O U      

   
 
Char At (0)                              Char At (9)                                                 Char At (length () –1)
 
Methods     Returns 
 
public byte[] getBytes()     Return byte array of string characters 
 
public String substring(int beginIndex)  Return substring from index 

beginIndex to the end of string 
 
public String substring   Return substring from index   



 

 

51

Strings and Characters  (int beginIndex, int endIndex)  beginIndex to the endIndIndex of 
string                                                                                               

 
public String concat(String str)                         Return a string which have sting    
  on which this method is called  
                                                                               Concatenated with str  
 
public char[] toCharArray()                   Return character array of string              
 
Comparisons Methods 

public boolean equals(Object str) Return true if strings contain the 
same characters in the same 
order. 

                                                                        
public boolean equalsIgnoreCase(String aString) Return true if both the strings, -

contain the same characters in 
the same order, and ignore case 
in comparison. 

                                                                                      
public int compareTo(String aString)    Compares to aString returns <0 

if a String< sourceString                                                                               
0 if both are equal  and return >0  
if aString>sourceString  
; this method is case sensitive 
and used for knowing whether 
two strings are identical or not. 

 
public boolean regionMatches  Return true if both the string 
(int toffset, String other, int offset, int len) have exactly same symbols 
                                                                                     in the given region. 
                                                                                      
public boolean startsWith (String prefix, int toffset)   Return true if prefix occurs at 

index toffset. 
 
public boolean startsWith(String prefix) Return true if string start with 

prefix. 
 
public boolean endsWith(String suffix)  Return true if string ends with 

suffix. 
 
Methods for Modifying Strings 

public String replace(char oldChar, char newChar)  Return a new string with all 
oldChar replaced by newChar 

                                                                                     
public String toLowerCase()   Return anew string with all 

characters in lowercase 
public String toUpperCase() Return anew string with all 

characters in uppercase. 
 
public String trim()      Return a new string with 

whitespace deleted from front 
and back of the string 

 
In the program given below some of the string methods are used. This program will 
give you the basic idea about using of substring methods, comparisons methods, and 
string modifying methods. 
 



 

 52 

Multithreading, I/O, and 
String Handling 

public class StringResult 
{ 
public static void main(String[] args) 
{ 
String original = " Develop good software   "; 
String sub1 = ""; 
String  sub2 = "Hi"; 
int index = original.indexOf('s'); 
sub1 =original.substring(index);  
System.out.println("Substring sub1 contain: " + sub1); 
System.out.println("Original contain: " + original+"."); 
original= original.trim(); 
System.out.println("After trim original contain: " + original+"."); 
System.out.println("Original contain: " + original.toUpperCase()); 
if (sub2.startsWith("H")) 
System.out.println("Start with H: Yes"); 
else 
System.out.println("Start with H: No"); 
sub2 = sub2.concat(sub1); 
System.out.println("sub2 contents after concatenating sub1:"+sub2); 
System.out.println("sub2 and  sub1 are equal:"+sub2.equals(sub1)); 
} 
}  
Output: 
---------- Run ---------- 
Substring sub1 contain: software    
Original contain:  Develop good software. 
After trim original contain: Develop good software. 
Original contain: DEVELOP GOOD SOFTWARE 
Start with H: Yes 
sub2 contents after concatenating sub1:Hisoftware    
sub2 and  sub1 are equal:false 
 
Now let us see valueOf() methods, these methods are used to convert different type of 
values like integer, float double etc. into string form. ValueOf () method is overloaded 
for all simple types and for Object type too. ValueOf() methods  returns a string 
equivalent to the value which is passed in it as argument.   
 

3.5  DATA CONVERSION USING VALUE OF( )
 METHODS 
 
public static String valueOf(boolean b)   Return string representation of the 

boolean argument 
 
public static String valueOf(char c)  Return string representation of the 

character argument 
 
public static String valueOf(int i)  Return string representation of the 

integer argument 
 
public static String valueOf(long l)            Return string representation of the  

long argument 
 
public static String valueOf(float f) Return string representation of the 

float argument 



 

 

53

Strings and Characters  public static String valueOf(double d)  Return string representation of the  
double argument 

 
public static String valueOf(char data[]) Return string representation of the  

character array argument 
 
public static String valueOf(char data[],  Return string representation of a int  
offset, int count)   specific sub array of the character 

array argument    
 
In the program given below you can see how an integer data is converted into a string 
type. This program also uses one very important operator ‘+’ used for concatenating 
two strings. 
class String_Test 
{ 
public static void main(String[] args)  
{ 
String s1 = new String("Your age is: "); 
String s2 = new String(); 
int age = 28; 
s2 = String.valueOf(age); 
s1 = s1+s2+ " years"; 
System.out.println(s1); 
} 
} 
Output: 
Your age is: 28 years 
 

 Check Your Progress 2 
 
1)  Write a program to find the length of string “Practice in programming is always 

good”. Find the difference between first and last occurrence of ‘r’ in this string. 
 
 ……………………………………………………………………………………

…………………………………………………………………………………… 

 …………………………………………………………………………………… 

2)  Write a program which replaces all the occurrence of ‘o’ in string “Good 
Morning” with ‘a’ and print the resultant string. 

 
……………………………………………………………………………

…………………………………………………………………………… 

…………………………………………………………………………… 

3) Write a program, which takes full path (directory path and file name) of a file 
and display Extension, Filename and Path separately for example, for 
input"/home/mem/index.html", output is Extension = html  

 Filename = index Path = /home/mem 
 

……………………………………………………………………………

…………………………………………………………………………… 

……………………………………………………………………………

…………………………………………………………………………… 



 

 54 

Multithreading, I/O, and 
String Handling 

You have seen that String class objects are of fixed length and no modification can be 
done in the content of strings except replacement of characters. If there is need of 
strings, which can be modified, then StrinBuffer class object should be used. Now let 
us discuss about StringBuffer class in detail. 
 

3.6  STRINGBUFFER CLASS AND METHODS 

StringBuffer: It is a peer class of String that provides much of the functionality of 
strings. In contrast to String objects, a StringBuffer object represents growable and 
writeable character sequences. In the strings created by using StringBuffer you may 
insert characters and sub-strings in the middle or append at the end. Three 
constructors of StringBuffer class are given below: 

StringBuffer() Constructs a string buffer with no characters in it and an initial capacity 
of 16 characters. 

StringBuffer (int size) constructs a string buffer with no characters in it and an initial 
capacity specified by the length argument. 

StringBuffer (String str) Constructs a string buffer so that it represents the same 
sequence of characters as the string argument; in other words, the initial contents of 
the string buffer is a copy of the argument string. 

Methods of String Buffer Class 

In addition to functionality of String class methods, SrtingBuffer also provide 
methods for modifying strings by inserting substring, deleting some content of string, 
appending string and altering string size dynamically. Some of the key methods in 
StringBuffer are mentioned below: 
 
public int length()  Returns the length (number of characters)of the  string buffer on 
which it is called. 
                                      
 

   0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
 

17 
 

18 
 

19 
 

20 21 
 

J A V A  P R O G R A M M I N G       

 
 

Length () = 21 
                                                                 
   Figure 1:  StringBuffer 
 
public int capacity()               Returns the total allocated  capacity of the 

String buffer. The capacity is the amount                     
of storage available for characters can be 
inserted. 

 
public void ensureCapacity   Used to ensures the capacity of the buffer is  
(int minimumCapacity)  at least equal to the specified minimum 
    capacity. If the current capacity of the string  

buffer on which this method is called is less 
than the argument value, then a new  

                                               internal buffer is allocated with greater  
capacity and the new capacity is the larger 
than 

                                                
i) The minimumCapacity argument.  

ii) Twice the old capacity, plus 2.  



 

 

55

Strings and Characters  If you pass the minimumCapacity 
argument a   nonpositive, value, then 
this method takes no action and 
simply returns.                                           

public void setLength(int newLength)    Used to set the length of the string 
buffer on which it is called, if new 
length is less than the current length 
of the string buffer, the string buffer 
is truncated to contain exactly the 
number of characters given by the 
newLength argument. 
If the newLength argument is greater 
than or equal to the current length, 
string buffer is appended with 
sufficient null characters so that 
length becomes equal to the new                                             
Length argument. Obviously the     

                                                       newLength argument must be 
greater than or equal to 0. 

      public void setCharAt(int index, char ch) Set character ch at the position 
specified by index  in  the  string 
buffer on which it is called. This 
alters the character sequence that is 
identical to the old character                                            
sequence, except that now string 
buffer contain the character ch at 
position index and existing  
characters at index and after that in 
the string buffer are shifted right by 
one position. The value of index                                                                        
argument must be greater than or 
equal to 0, and less than the                                                                     
length of this string buffer. 

                                                             
public StringBuffer append(String newStr)   Appends the  newStr to the string  
     buffer. The characters of the  
                                                                     string newStr are appended, to  
     the contents of this string buffer 
                                                                     increasing the length of the string  
     buffer on which this method is called  
                                                                     by the length of the newStr. Public. 
 
StringBuffer append    Appends the characters of the 
(StringBuffer strbuf)     strbuf to the string buffer, this  
                                                                      results in increasing the length of the  
      StringBuffer object on which  
                                                                      this method is called.  

                                                           The method ensureCapacity is first  
  called on this StringBuffer with the  
                                                           new buffer length as its argument  

 (This ensures that the storage of this 
StringBuffer is adequate to contain 
the additional characters being 
appended). 

public StringBuffer append(int i)       Appends the string representation of  
                          the int argument to the string buffer 



 

 56 

Multithreading, I/O, and 
String Handling 

                                                                         on which it is called. The argument  
     is converted to a string by using  
                                                                         method String.valueOf, and then the  

  characters of converted string are    
  then appended to the string buffer.    

public StringBuffer insert (int offset, String str) Insert the string str into the string 
buffer on which it is called at the 
indicated offset. It moves up 
characters originally after the offset 
position are shifted. Thus it increase 
the length of this string buffer by the 
length of the argument. The offset 
argument must be greater than or 
equal to 0, and less than or equal to 
the length of this string buffer.     

                                                                       
public StringBuffer insert (int offset,char[] str) Inserts the string representation of 

the array argument character into the    
    string buffer on which this method is 

called. Insertion is made in the string               
buffer at the position indicated by 
offset. The length of this string 
buffer increases by the length of the 
argument                                                           

                                                                     
public StringBuffer insert    Inserts the string representation of  
ch (int offset, char ch)   into the string buffer at the position  
                                                                         indicated by offset. The length of this  
                                                                         string buffer increases one.    
      
public StringBuffer reverse()          Return the reverse of the sequence of 

the character sequence contained in   
    the string buffer on which it is called.              

                                                            If  n is the length of the old character  
sequence, in the string buffer just 
prior to execution of the reverse 
method. Then the character at index 
k in the new character sequence is 
equal to the character at index n-k-1 
in the old character sequence. 

   
public StringBuffer delete(int start, int end)   This method is used to remove total 

end–start +1 characters starting from 
location start and up to including 
index end.                                                         

 
public StringBuffer deleteCharAt    Removes the character at the  
(int index)         specified position in the string buffer 

on which this method is called.  
                                                                         
public StringBuffer replace    Replaces the characters of the string 
(int start, int end, String  str)    buffer from start to end by the  
    characters in string str. 
                                                                     
Now let us see use of some of the methods like capacity, append etc. of StringBuffer. 
As you know capacity method differs from length method, in that it returns the 
amount of space currently allocated for the StringBuffer, rather than the amount of 



 

 

57

Strings and Characters  space used. For example, in the program given below you can see that capacity of the 
StringBuffer in the reverseMe method never changes, while the length of the 
StringBuffer increases by one in each of the iteration of loop.  
 
class ReversingString 
  { 
         public String reverseMe(String source) 
        { 
         int i, len = source.length(); 
         StringBuffer dest = new StringBuffer(len); 
 System.out.println("Length of dest:"+dest.length()); 
 System.out.println("Capacity of dest:"+dest.capacity()); 
         for (i = (len - 1); i >= 0; i--) 
         dest.append(source.charAt(i)); 
 System.out.println("Capacity of dest:"+dest.capacity()); 
 System.out.println("Length of dest:"+dest.length()); 
         return dest.toString(); 
        } 
        } 
 public class ReverseString 
  { 
   public static void main ( String args[]) 
 { 
 ReversingString R = new RString(); 
 String myName = new String("Mangala"); 
 System.out.println("Length of myName:"+myName.length()); 
             System.out.println(" myName:"+myName); 
 System.out.println("reverseMe call:"+R.reverseMe(myName)); 
      } 
Output: 
Length of myName:7 
myName:Mangala 
Length of dest:0 
Capacity of dest:7 
Capacity of dest:7 
Length of dest:7 
Reverse call:alagnaM 

Note: 

i. In the reverseMe () method of above StringBuffer’s to String () method is used 
to convert the StringBuffer to a String object before returning the String. 

 
ii. You should initialize a StringBuffer’s capacity to a reasonable first guess, 

because it minimizes the number of times memory to be allocated for the 
situation when the appended character causes the size of the StringBuffer to 
grow beyond its current capacity. Because memory allocation is a relatively 
expensive operation, you can make your code more efficient by initializing a 
StringBuffer’s capacity to a reasonable first guess size.  

Now let us take one more example program to see how to insert data into the middle 
of a StringBuffer. This is done with the help of one of StringBufffer’s insert methods.  
class  InsertTest 
{ 
public static void main ( String args[]) 
{ 
StringBuffer MyBuffer = new StringBuffer("I got class in B.Sc."); 
MyBuffer.insert(6, "First "); 
System.out.println(MyBuffer.toString()); 
} 



 

 58 

Multithreading, I/O, and 
String Handling 

} 
Output: 
I got First class in B.Sc. 
 

 Check Your Progress 3 
 
1) List any two operations that you can perform on object StringBuffer but cannot 

perform on object of String class. 

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

2) Write a program to answer the following: 
 

i.  Find the initial capacity and length of the following string buffer:  
StringBuffer StrB = new StringBuffer(“Object Oriented Programming is 
possible in Java”); 

 
 ii.  Consider the following string:  

 String Hi = “This morning is very good”; 
What is the value displayed by the expression Hi.capacity()?  
What is the value displayed by the expression Hi.length()?  
What is the value returned by the method call Hi.charAt(10)? 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………  

 
3)  Write a program that finds initials from your full name and displays them. 

……………………………………………………………………………………

…………………………………………………………………………………… 

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

3.7  SUMMARY 

Character and strings are the most important data type. Java provides Character, 
String, and StringBuffer classes for handling characters, and strings. String class is 
used for creating the objects which are not to be changed. The string objects for which 
contents are to be changed StringBuffer class, is used. Character class provides 
various methods like compareTo, equals, isUpperCase.String class provides methods 
for index operations, substring operations, and a very special group of valueOf 
methods. Comparison methods are also provided in String class.String class methods 



 

 

59

Strings and Characters  like replace, toLowerCase, trim are available for minor modifications though, in 
general string classes is not used for dynamic Strings. StringBuffer objects allow to 
insert character or substring in the middle or append it to the end. StringBuffer also 
allows deletion of a substring of a string. 
 

3.8  SOLUTIONS/ANSWERS 
 
Check Your Progress 1 
 
1) //Program to test whether the content of a Character object is Upper or Lower 

public class CharTest 
{ 

     public static void main(String args[])  
      { 
         Character MyChar1 = new Character('i'); 
         Character MyChar2 = new Character('J'); 
 //Test for MyChar1 
         if (MyChar1.isUpperCase(MyChar1.charValue())) 
 System.out.println("MyChar1 is in Upper Case: "+MyChar1); 
         else 
 System.out.println("MyChar1 is in Lower Case: "+MyChar1); 
 // Test for MyChar2 
         if (MyChar2.isUpperCase(MyChar2.charValue())) 
 System.out.println("MyChar2 is in Upper Case: "+MyChar2); 
         else 
 System.out.println("MyChar2 is in Lower Case: "+MyChar2);  
         
      } 
 } 
Output: 
MyChar1 is in Lower Case: i 
MyChar2 is in Upper Case: J 
 
2) This instance method is used to compare the value held by the current object 

with the value held by another object. For example let Ch1 and Ch2 be two 
objects of Character class then 
Ch1.equals(Ch2);  
method returns true if the values held by both objects are equal, otherwise 
false. 

 
3) StringBuffer object should be given preference over String objects if there is 

a need of modification (change may take place) in the content. These include 
flexibility of increase in size of object. 

 
Check Your Progress  2 

 
1) class  StringLen 

{ 
 public static void main(String[] args)  
 { 
 String MyStr = new String(" Practice in programming is always good"); 
 System.out.println("The length of MyStr is :"+MyStr.length()); 
 int i = MyStr.lastIndexOf("r")- MyStr.indexOf("r"); 

System.out.println("Difference between first and last occurence of 'r' in MyStr 
is :"+ i); 

   
 } 



 

 60 

Multithreading, I/O, and 
String Handling 

} 
Output: 
The length of MyStr is: 39 
Difference between first and last occurence of 'r' in MyStr is: 15 
 
2) //program 

class ReplaceStr  
{ 

 public static void main(String[] args)  
 { 
  String S1 = new String("Good Morning");  
  System.out.println("The old String is:"+S1); 
  String S2= S1.replace('o', 'a'); 

System.out.println("The new String after rplacement of 'o' with 'a' is:"+S2); 
 } 

} 
Output: 
The old String is:Good Morning 
The new String after replacement of 'o' with 'a' is: Good Marning 
 
3)  

// It is assumed that  fullPath has a directory path, filename, and extension. 
class Filename 

 { 
    private String fullPath; 
    private char pathSeparator, extensionSeparator; 
    public Filename(String str, char separ, char ext)  
    { 
        fullPath = str; 
        pathSeparator = separ; 
        extensionSeparator = ext; 
    } 
    public String extension()  
    { 
        int dot = fullPath.lastIndexOf(extensionSeparator); 
        return fullPath.substring(dot + 1); 
     } 
    public String filename()  
   { 
        int dot = fullPath.lastIndexOf(extensionSeparator); 
        int separ = fullPath.lastIndexOf(pathSeparator); 
        return fullPath.substring(separ + 1, dot); 
    } 
    public String path()  
    { 
        int separ = fullPath.lastIndexOf(pathSeparator); 
        return fullPath.substring(0, separ); 
    } 
} 
// Main method  is in FilenameDemo class 
 public class FilenameDemo1 
  { 
    public static void main(String[] args)  
    { 
        Filename myHomePage = new Filename("/HomeDir/MyDir/MyFile.txt",'/', '.'); 
        System.out.println("Extension = " + myHomePage.extension()); 
        System.out.println("Filename = " + myHomePage.filename()); 
        System.out.println("Path = " + myHomePage.path()); 



 

 

61

Strings and Characters      } 
} 
Output: 
 
Extension = txt 
Filename = MyFile 
Path = /HomeDir/MyDir 
 
Note: 
 
In this program you can notice that extension uses dot + 1 as the argument to 
substring. If the period character is the last character of the string, then dot + 1 is 
equal to the length of the string which is one larger than the largest index into the 
string (because indices start at 0). However, substring accepts an index equal to but 
not greater than the length of the string and interprets it to mean “the end of the 
string.”  
Check Your Progress 3 

1) i. Insertion of a substring in the middle of a string. 

ii. Reverse the content of a string object. 
2) class StrCap  

{ 
 public static void main(String[] args)  
 { 

StringBuffer StrB = new StringBuffer("Object Oriented Programming is 
possible in Java"); 

 String  Hi = new  String("This morning is very good"); 
 System.out.println("Initial Capacity of StrB is :"+StrB.capacity()); 
 System.out.println("Initial length of StrB is :"+StrB.length()); 
 

//System.out.println("value displayed by the expression Hi.capacity() is:  
"+Hi.capacity()); 
System.out.println("value displayed by the expression Hi.length() is: 
"+Hi.length()); 
System.out.println("value displayed by the expression Hi.charAt() is: 
"+Hi.charAt(10)); 
} 
} 

Output: 
Initial Capacity of StrB is :63 
Initial length of StrB is :47 
value displayed by the expression Hi.length() is: 25 
value displayed by the expression Hi.charAt() is: n 
 
Note:  The statement “System.out.println("value displayed by the expression 

Hi.capacity() is: "+Hi.capacity());” is commented for successful execution of 
program because capacity method is mot available in String class. 

 
3)  

public class NameInitials 
 { 
     public static void main(String[] args) 
 { 
         String myNameIs = "Mangala Prasad Mishra"; 
         StringBuffer myNameInitials = new StringBuffer(); 
 System.out.println("The name is : "+myNameIs);  
         // Find length of name given 
 int len = myNameIs.length(); 



 

 62 

Multithreading, I/O, and 
String Handling 

         for (int i = 0; i < len; i++) 
   { 
          if (Character.isUpperCase(myNameIs.charAt(i)))  
       { 
          myNameInitials.append(myNameIs.charAt(i)); 
         } 
         } 
         System.out.println("Initials of the name: " + myNameInitials); 
         } 
         } 
Output: 
 
The name is: Mangala Prasad Mishra 
Initials of the name: MPM 
 


	UNIT 3   STRINGS AND CHARACTERS
	Characters
	
	(Check Your Progress 1


	3.3 THE STRING CLASS
	Now let us discuss String class in detail. There are many constructors provided in Java to create string objects. Some of them are given below.
	MethodsReturns
	Modifying Strings
	
	
	(Check Your Progress 2
	STRINGBUFFER CLASS AND METHODS
	StringBuffer: It is a peer class of String that provides much of the functionality of strings. In contrast to String objects, a StringBuffer object represents growable and writeable character sequences. In the strings created by using StringBuffer you ma
	Methods of String Buffer Class
	Note:
	(Check Your Progress 3
	Check Your Progress 3




