

 55

Networking Features

UNIT 3 NETWORKING FEATURES

Structure Page Nos.

3.0 Introduction 55
3.1 Objectives 55
3.2 Socket Overview 55
3.3 Reserved Parts and Proxy Servers 59
3.4 Internet Addressing: Domain Naming Services (DNS) 60
3.5 JAVA and the net: URL 61
3.6 TCP/IP Sockets 64
3.7 Datagrams 66
3.8 Summary 69
3.9 Solutions/ Answers 69

3.0 INTRODUCTION

Client/server applications are need of the time. It is challenging and interesting to
develop Client/server applications. Java provides easier way of doing it than other
programming such as C. Socket programming in Java is seamless. The java.net
package provides a powerful and flexible infrastructure for network programming.
Sun.* packages have some classes for networking. In this unit you will learn the
java.net package, using socket based communications which enable applications to
view networking operations as I/O operation. A program can read from a socket or
write to a socket as simply as reading a file or writing to a file.

With datagram and stream sockets you will be developing connection less and
connection oriented applications respectively. Going through various classes and
interfaces in java. net, will be useful in learning, how to develop networking
applications easily. In this unit you will also learn use of stream sockets and the TCP
protocol, which is the most desirable for the majority of java programmers for
developing networking applications.

3.1 OBJECTIVES

After going though this Unit, you will be able to:

• define socket and elements of java networking;
• describe the stream and datagram sockets, and their usage;
• Explain how to implement clients and servers programs that communicates with

each other;
• define reserved sockets and proxy servers;
• implement Java networking applications using TCP/IP Server Sockets, and
• implement Java networking applications using Datagram Server Sockets.

3.2 SOCKET OVERVIEW

Most of the inter process communication uses the client server model. The terms
client and server refer to as the two processes, which will be communicating with each
other. One of the two processes, the client, connects to the other process, the server,
typically to make a request for information. A good analogy of this type of
communication can be a person who makes a railway engineering from other person

Applets Programming
and Advance Java
Concepts

may be through phone call: person making enquiry is a client and another person
providing information is a server.

Notice that the client needs to know about the existence and the address of the server,
but the server does not need to know the address of (or even the existence of) the
client prior to the connection being established. Once a connection is established, both
sides can send and receive information.

The system calls for establishing a connection are different for the client and the
server, but both involve the basic construct of a socket.

Socket is a data
structure that
maintains necessary
information used for
communication
between client &
server. Therefore
both end of
communication has
its own sockets.

Java introduces socket based communications, which enable applications to view
networking as if it were file I/O– a program which can read from socket or write
to a socket with the simplicity as reading from a file or writing to a file. Java provides
stream sockets and datagram sockets.

Stream Sockets

Stream Sockets are used to provide a connection-oriented service (i.e. TCP-
Transmission Control Protocol).

With stream sockets a process establishes a connection to another process. Once the
connection is in place, data flows between processes in continuous streams.

Datagram Sockets

This socket are used to provide a connection-less service, which does not guarantee
that packets reach the destination and they are in the order at the destination. In this,
individual packets of information are transmitted. In fact it is observed that packets
can be lost, can be duplicated, and can even be out of sequence.

In this section you will get answers of some of the most common problems to be
addressed in sockets programming using Java. Then you will see some example
programs to learn how to write client and server applications.

The very first problem you have to address is “How will you open a socket?”
Before reaching to the answer to this question you will definitely think that what type
of socket is required? Now the answer can be given as follows:

1. If you were programming a client, then you would open a socket like this:

Socket MyClient;

MyClient = new Socket("Machine_Name", PortNumber);

Where “Machine name” is the server machine you are trying to open a connection to,
and “PortNumber” is the number of the port on server, on which you are trying to
connect it. When selecting a port number, you should note that port numbers between
0 and 1,023 are reserved for privileged users or slandered services like e–mail, HTTP
Port is a unique
number association
with a socket on a
machine. In other
word’s port is a
numbered socket on a
machine.
 56

etc. For example, port number 21 is for FTP, 23 is for TLNET, and 80 is for HTTP. It
is a good idea to handle exceptions while creating a new Socket.

Socket MyClient;
try {
 MyClient = new Socket("Machine name", PortNumber);
 }
catch (IOException e)

 57

Networking Features {
 System.out.println(e);
 }

2. If you are programming a server, then this is how you open a socket:

ServerSocket MyService;
try {
 MyServerice = new ServerSocket(PortNumber);
 }
catch (IOException e)
 {
 System.out.println(e);
 }
While implementing a server you also need to create a socket object from the
ServerSocket in order to listen for client and accept connections from clients.

Socket clientSocket = null;
try {
 serviceSocket = MyService.accept();
 }
catch (IOException e)
 {
 System.out.println(e);
 }

You can notice that for a Client side programming you use the Socket class and for
the Server side programming you use the ServerSocket class.

Now you know how to create client socket and server socket. Now you have to create
input stream and output stream to receive and send data respectively.

InputStream

On the client side, you can use the DataInputStream class to create an input stream to
receive response from the server:

DataInputStream input;
try {
 input = new DataInputStream(MyClient.getInputStream());
 }
catch (IOException e)
 {
 System.out.println(e);
 }
The class DataInputStream allows you to read lines of text and Java primitive data
types in a portable way. It has methods such as read, readChar, readInt, readDouble,
and readLine. Use whichever function you think suits your needs depending on the
type of data that you receive from the server.

On the server side, you can use DataInputStream to receive input from the client:
DataInputStream input;
try {
 input = new DataInputStream(serviceSocket.getInputStream());
 }
catch (IOException e)

 58

Applets Programming
and Advance Java
Concepts

 {
 System.out.println(e);
 }
OutputStream

On the client side, you can create an output stream to send information to the server
socket using the class PrintStream or DataOutputStream of java.io:

PrintStream output;
try {
 output = new PrintStream(MyClient.getOutputStream());
 }
catch (IOException e)
 {
 System.out.println(e);
 }

The class PrintStream has methods for displaying textual representation of Java
primitive data types. Its write () and println () methods are important here. Also, you
can use the DataOutputStream:

DataOutputStream output;
try {
 output = new DataOutputStream(MyClient.getOutputStream());
 }
catch (IOException e)
 {
 System.out.println(e);
 }
The class DataOutputStream allows you to write Java primitive data types; many of its
methods write a single Java primitive type to the output stream. The method
writeBytes () is a useful one.

On the server side, you can use the class PrintStream to send information to the client.

PrintStream output;
try {
 output = new PrintStream(serviceSocket.getOutputStream());
 }
catch (IOException e)
 {
 System.out.println(e);
 }
If you have opened a socket for connection, after performing the desired operations
your socket should be closed. You should always close the output and input stream
before you close the socket.

On the client side:

try
 {
 output.close();
 input.close();
 MyClient.close();
 }
catch (IOException e)

 59

Networking Features {
 System.out.println(e);
 }

On the server side:

try
 {
 output.close();
 input.close();
 serviceSocket.close();
 MyService.close();
 }
catch (IOException e)
 {
 System.out.println(e);
 }

 Check Your Progress 1

1) Write a program to show that from the client side you send a string to a server
 that reverse the string which is displayed on the client side.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Describe different types of sockets.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) What are Datagram and Stream Protocols?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3.3 RESERVED PORTS AND PROXY SERVERS

Now let us see some reserve ports. As we have discussed earlier, there are some port
numbers, which are reserved for specific purposes on any computer working as a
server and connected to the Internet. Most standard applications and protocols use
reserved port numbers, such as email, FTP, and HTTP.

When you want two programs to talk to each other across the Internet, you have to
find a way to initiate the connection. So at least one of the ‘partners’ in the
conversation has to know where to find the other one or in other words the address of
other one. This can be done by address (IP number + port number) of the one side to
the other.

However, a problem could arise if this address must not be taken over by any other
program. In order to avoid this, there are some port numbers, which are reserved for
specific purposes on any computer connected to the Internet. Such ports are reserved
for programs such as ‘Telnet’, ‘Ftp’ and others. For example, Telnet uses port 23, and

 60

Applets Programming
and Advance Java
Concepts

FTP uses port 21. Note that for each kind of service, not only a port number is given,
but also a protocol name (usually TCP or UDP).

Two services may use the same port number, provided that they use different
protocols. This is possible due to the fact that different protocols have different
address spaces: port 23 of a one machine in the TCP protocol address space is not
equivalent to port 23 on the same machine, in the UDP protocol address space.

Proxy Servers

A proxy server is a kind of buffer between your computer and the Internet resources
you are accessing. They accumulate and save files that are most often requested by
thousands of Internet users in a special database, called “cache”. Therefore, proxy
servers are able to increase the speed of your connection to the Internet. The cache of
a proxy server may already contain information you need by the time of your request,
making it possible for the proxy to deliver it immediately. The overall increase in
performance may be very high.

Proxy servers can help in cases when some owners of the Internet resources impose
some restrictions on users from certain countries or geographical regions. In addition
to that, a type of proxy server called anonymous proxy servers can hide your IP
address thereby saving you from vulnerabilities concerned with it.

Anonymous Proxy Servers

Anonymous proxy servers hide your IP address and thereby prevent your data from
unauthorized access to your computer through the Internet. They do not provide
anyone with your IP address and effectively hide any information about you. Besides
that, they don’t even let anyone know that you are surfing through a proxy server.
Anonymous proxy servers can be used for all kinds of Web-services, such as Web-
Mail (MSN Hot Mail, Yahoo mail), web-chat rooms, FTP archives, etc.
ProxySite.com will provide a huge list of public proxies.

Any web resource you access can gather personal information about you through your
unique IP address – your ID in the Internet. They can monitor your reading interests,
spy upon you, and according to some policies of the Internet resources, deny
accessing any information you might need. You might become a target for many
marketers and advertising agencies that, having information about your interests and
knowing your IP address as well as your e-mail. They will be able to send you
regularly their spam and junk e-mails.

3.4 INTERNET ADDRESSING: DOMAIN NAMING
SERVICES (DNS)

You know there are thousands of computers in a network; it is not possible to
remember the IP address of each system. Domain name system provides a convenient
way of finding computer systems in network based on their name and IP address.
Domain name services resolves names to the IP addresses of a machine and
vice-versa. Domain name system is a hierarchical system where you have a top-level
domain name server sub domain and clients with names & IP address.

When you use a desktop client application, such as e-mail or a Web browser, to
connect to a remote computer, your computer needs to resolve the addresses you have
entered, into the IP addresses it needs to connect to the remote server. DNS is a way to
resolve domain name to IP addresses on a TCP/IP network.

Networking Features The major components of DNS are:
Domain Name Space,
Domain Name Servers and Resource Records (RR),
Domain Name Resolvers (DNRs).

The Domain Name Space: It is a tree-structured name space that contains the domain
names and data associated with the names. For example, astrospeak.indiatimes.com is
a node within the indiatimes.com domain, which is a node in the com domain. Data
associated with astrospeak.indiatimes.com includes its IP address. When you use DNS
to find a host address, you are querying the Domain Name Space to extract
information.

The Domain Name Space for an entity is the name by which the entity is known on
the Internet. For example, in the organization shown in, you have two entities with
two address spaces. The Times of India organization is known on the Internet as the
timesofindia.com domain, and our sample Internet organization is known as the
indiatimes.com domain. Hosts at these organizations are known as a host name plus
the domain name; for example, money.timesofindia.com. Similarly, users in these
domains can be found by their e-mail aliases; for example, abc@indiatimes.com.

The Domain Name Server points to other Domain Name Servers that have
information about other subsets of the Domain Name Space. When you query a
Domain Name Server, it returns information if it is an authoritative server for that
domain. If the Domain Name Server doesn’t have the information, it refers you to a
higher level Domain Name Server, which in turn can refer you to another Domain
Name Server, until it locates the one with the requested information. In this way, no
single server needs to have all the information for every host you might need to
contact.

A Domain Name Resolver extracts information from Domain Name Servers so you
can use host addresses instead of IP addresses in clients such as a Web browser or a
File Transfer Protocol (FTP) client, or with utilities such as ping, tracer, or finger. The
DNR is typically built into the TCP/IP implementation on the desktop and needs to
know only the IP address of the Domain Name Server. Configuring the DNR on the
desktop is usually a matter of filling in the TCP/IP configuration data.

3.5 JAVA AND THE NET: URL

You know each package defines a number of classes, interfaces, exceptions, and
errors. The java.net package contains these, interfaces, classes, and exceptions: This
package is used in programming where you need to know some information regarding
the internet or if you want to communicate between two host computers.

Interfaces in java.net Exceptions in java.net

ContentHandlerFactory BindException
FileNameMap ConnectException
SocketImplFactory MalformedURLException
URLStreamHandlerFactory NoRouteToHostException

Classes in java.net ProtocolException
ContentHandler SocketException
DatagramSocket UnknownHostException
DatagramPacket UnknownServiceException
DatagramSocketImpl
HttpURLConnection
InetAddress
A Domain Name
Server provides
information
about a subset of
the Domain
Name Space.
61

 62

Applets Programming
and Advance Java
Concepts

MulticastSocket
ServerSocket
Socket
SocketImpl
URL
URLConnection
URLEncoder
URLStreamHandler

URL

URL is the acronym for Uniform Resource Locator. It represent the addresses of
resources on the Internet. You need to provide URLs to your favorite Web browser so
that it can locate files on the Internet. In other words you can see URL as addresses on
letters so that the post office can locate for correspondents URL class is provided in
the java.net package to represent a URL address.

URL object represents a URL address. The URL object always refers to an absolute
URL. You can construct from an absolute URL, a relative URL. URL class provides
accessor methods to get all of the information from the URL without doing any string
parsing.

You can connect to a URL by calling openConnection() on the URL. The
openConnection() method returns a URLConnection object. URLConnection
object is used for general communications with the URL, such as reading from it,
writing to it, or querying it for content and other information.

Reading from and Writing to a URL Connection

Some URLs, such as many that are connected to cgi-bin scripts, allow you to write
information to the URL. For example, if you have to search something, then search
script may require detailed query data to be written to the URL before the search can
be performed.

Before interacting with the URL you have to first establish a connection with the
Web server that is responsible for the document identified by the URL.

Then you can use TCP socket for the connection is constructed by invoking the
oprnConnection method on the URL object. This method also performs the name
resolution necessary to determine the IP address of the Web server.

The openConnection method returns an object of type URLConnectionn to the Web
server which is requested by calling connection on the URLConnection object. For
input and output handling for the document identified by the URL InputStream and
OutputStream are used respectively.

Below are the various constructors and methods of URL class of java.net package.

public URL(String protocol, String host, int port, String file)
throws MalformedURLException

public URL(String protocol, String host, String file)
throws MalformedURLException

public URL(String spec) throws MalformedURLException
public URL(URL context, String spec) throws MalformedURLException
public int getPort()

 63

Networking Features public String getFile()
public String getProtocol()
public String getHost()
public String getRef()
public boolean equals(Object obj)
public int hashCode()
public boolean sameFile(URL other)
public String toString()
public URLConnection openConnection() throws IOException
public final InputStream openStream() throws IOException
public static synchronized void setURLStreamHandlerFactory(
URLStreamHandlerFactory factory)

In the example program given below, URL of homepage of “rediff.com” is created.

import java.net.*;
class URL_Test
{
 public static void main(String[] args) throws MalformedURLException
 {
 URL redURL = new URL("http://in.rediff.com/index.html");
 System.out.println("URl Prtocol:"+redURL.getProtocol());
 System.out.println("URl Port:"+redURL.getPort());
 System.out.println("URl Host:"+redURL.getHost());
 System.out.println("URl File"+redURL.getFile());
 }
}
Output:
URl Prtocol:http
URl Port:-1
URl Host:in.rediff.com
URl File/index.html

 Check Your Progress 2

1) When should you use Anonymous Proxy Servers?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Explain various kinds of domain name servers.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Write a program in Java to know the Protocol, Host, Port, File and Ref of a

particular URL using java.net.URL package.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

 64

Applets Programming
and Advance Java
Concepts

3.6 TCP/IP SOCKETS

TCP/IP refers to two of the protocols in the suite: the Transmission Control Protocol
and the Internet Protocol. TCP/IP is a set of

protocols used for
communication
between different
types of computers
and networks.

These protocols utilize sockets to exchange data between machines. The TCP protocol
requires that the machines communicate with one another in a reliable, ordered
stream. Therefore, all data sent from one side must be received in correct order and
acknowledged by the other side. This takes care of lost and dropped data by means of
acknowledgement and re-transmission. UDP, however, simply sends out the data
without requiring knowing that the data be received.

In order to do communication over the TCP protocol, a connection must first be
established between the pair of sockets. While one of the sockets listens for a
connection request (server), the other asks for a connection (client). Once two sockets
have been connected, they can be used to transmit data in both (or either one of the)
directions.

UDP is an unreliable protocol; there is no guarantee that the datagrams you have sent
will be put in the same order by the receiving socket. On the other hand, TCP is a
reliable protocol; it is guaranteed that the packets you send will be put in the order in
which they were sent.

In short, TCP is useful for implementing network services: such as remote login
(rlogin, telnet) and file transfer (FTP). These services require data of indefinite length
to be transferred. UDP is less complex and incurs fewer overheads. UDP is often used
in implementing client/server applications in distributed systems, which are built over
local area networks.

We have already discussed about client and server Sockets in section 3.2 of this Unit.
Recall the discussions in section 3.2, two packages java.net.ServerSocket and
java.net.Socket were used to create sockets.

Before we discuss about Socket and ServerSocket class, it is important to know about
InetAddress class. Let us see what is InetAddress claas.

InetAddress

This class is used for encapsulating numerical IP address and domain name for that
address.

Because InetAddress is not having any constructor, its objects are created by using
any of the following three methods

static InetAddress getLocalHost() throws UnknownHostException:
 returns the InetAddress object representing local host
static InetAddress getByName() throws UnknownHostException:

returns the InetAddress object for the host name passed to
it.

static InetAddress getAllByName() throws UnknownHostException: returns an array
of InetAddresses representing all the addresses that a particular name is resolves to.

Java.net.Socket

Constructors
public Socket(InetAddress addr, int port): creates a stream socket and connects it to
the specified port number at the specified IP address

 65

Networking Features public Socket (String host, int port): creates a stream socket and connects it to the
specified port number at the specified host

Methods:
InetAddress getInetAddress() : Return Inet Address of object associated with Socket

int getPort() : Return remote port to which socket is connected
int getLocalPort() Return local port to which socket object is connected.
public InputStream getInputStream(): Get InputStream associated with Socket
public OutputStream getOutputStream():Return OutputStream associated with socket
public synchronized void close() :closes the Socket.

Java.net.ServerSocket

Constructors:
public ServerSocket(int port): creates a server socket on a specified port with a queue
length of 50. A port number 0 creates a socket on any free port.

public ServerSocket(int port, int QueLen): creates a server socket on a specified port
with a queue length of QueLen.

public ServerSocket(int port, int QueLen, InetAddress localAdd): creates a server
socket on a specified port with a queue length specified by QueLet.On a multihomed
host, locaAdd specifies the IP address to which this socket binds.

Methods:

public Socket accept(): listens for a connection to be made to this socket and accepts
it. public void close():closes the socket.

Java TCP Socket Example

A Server (web server) at ohm.uwaterloo.ca
 - listens to port 80 for Client Connection Requests
 - Establish InputStream for sending data to client
 - Establish OutputStream for receiving data from client
TCP connection example: (Server)
import java.io.*;
import java.net.ServerSocket;
import java.net.Socket;
public class myserver {
 public static void main(String [] s) {
 try {
 ServerSocket s = new ServerSocket(80);
 While (true) {
 // wait for a connection request from client
 Socket clientConn = s.accept();
 InputStream in = clientConn.getInputStream();
 OutputStream out = clientConn.getOutputStream();
 // communicate with client
 // ..
 clientConn.close(); // close client connection
 }
 }catch (Exception e) {
 System.out.println(“Exception!”);
 // do something about the exception
 }
 }
}

 66

Applets Programming
and Advance Java
Concepts

TCP connection example: (Client)
import java.io.*;
import java.net.ServerSocket;
import java.net.Socket;
public class myclient {
 public static void main(String [] s) {
 try {
 InetAddress addr = InetAddress.getByName(
 “ohm.uwaterloo.ca”);
 Socket s = new Socket(addr, 80);
 InputStream in = s.getInputStream();
 OutputStream out = s.getOutputStream();
 // communicate with remote process
 // e.g. GET document /~ece454/index.html
 s.close();
 } catch(Exception e) {
 System.out.println(“Exception”);
 // do something about the Exception
 }
 }
}

3.7 DATAGRAMS

A datagram is an independent, self-contained message sent over the network whose
arrival, arrival time, and content are not guaranteed. Datagrams runs over UDP
protocol.

The UDP protocol provides a mode of network communication where packets sent by
applications are called datagrams. A datagram is an independent, self-contained
message sent over the network whose arrival, arrival time, and content are not
guaranteed. The datagram Packet and Datagram Socket classes in the java.net package
implement system independent datagram communication using UDP.

Actually the DatagramPacket class is a wrapper for an array of bytes from which data
will be sent or into which data will be received. It also contains the address and port to
which the packet will be sent.

DatagramPacket constructors:
public DatagramPacket(byte[] data, int length)
public DatagramPacket(byte[] data, int length, InetAddress host, int port)

You can construct a DatagramPacket object by passing an array of bytes and the
number of those bytes to the DatagramPacket() constructor:

String s = "My first UDP Packet"
byte[] b = s.getBytes();
DatagramPacket dp = new DatagramPacket(b, b.length());

Normally the object of DatagramPacket is created by passing in the host and port to
which you want to send the packet with data and its length. For example, object m in
the code given below:

try
{
InetAddress m = new InetAddress("http://mail.yahoo.com");
int chargen = 19;

 67

Networking Features String s = "My second UDP Packet"
byte[] b = s.getBytes();
DatagramPacket dp = new DatagramPacket(b, b.length, m, chargen);
 }
catch (UnknownHostException ex)
{
System.err.println(ex);
 }

The byte array that’s passed to the constructor is stored by reference, not by value. If
you change its contents elsewhere, the contents of the DatagramPacket change as
well.

DatagramPackets themselves are not immutable. You can change the data, the length
of the data, the port, or the address at any time using the following four methods:

public void setAddress(InetAddress host)
public void setPort(int port)
public void setData(byte buffer[])
public void setLength(int length)

You can retrieve address, port, data , and length of data using the following four get
methods:
public InetAddress getAddress()
public int getPort()
public byte[] getData()
public int getLength()

DatagramSocket constructors: The java.net.DatagramSocket class has three
constructors:
public DatagramSocket() throws SocketException
public DatagramSocket(int port) throws SocketException
public DatagramSocket(int port, InetAddress laddr) throws SocketException

The first is used for datagram sockets that are primarily intended to act as clients, i.e.,
a sockets that will send datagrams before receiving anything from anywhere.
The second constructors that specify the port and optionally the IP address of the
socket, are primarily intended for servers that must run on a well-known port.

Sending UDP Datagrams

To send data to a particular server, you first must convert the data into byte array.
Next you pass this byte array, the length of the data in the array (most of the time this
will be the length of the array) the InetAddress and port to DatagramPacket()
constructor.

For example, first you create atagramPacket object
try
{
 InetAddress m = new InetAddress("http://mail.yahoo.com");
 int chargen = 19;
 String s = "My second UDP Packet";
 byte[] b = s.getBytes();
 DatagramPacket dp = new DatagramPacket(b, b.length, m, chargen);
 }
catch (UnknownHostException ex)
{
 System.err.println(ex);

 68

Applets Programming
and Advance Java
Concepts

 }

Now create a DatagramSocket object and pass the packet to its send() method as try
 {
 DatagramSocket sender = new DatagramSocket();
 sender.send(dp);
 }
catch (IOException ex)
{
 System.err.println(ex);
 }

Receiving UDP Datagrams

To receive data sent to you, construct a DatagramSocket object bound to the port on
which you want to receive the data. Then you pass an empty DatagramPacket object
to the DatagramSocket’s receive() method.

public void receive(DatagramPacket dp) throws IOException.

The calling threads blocks until the datagram is received. Then dp is filled with the
data from that datagram. You can then use getPort() and getAddress() to tell where the
packet came from, getData() to retrieve the data, and getLength() to see how many
bytes were in the data. If the received packet is too long for the buffer, then it is
truncated to the length of the buffer. You can write program with the help of code
written below:
 try
 {
 byte buffer = new byte[65536]; // maximum size of an IP packet
 DatagramPacket incoming = new DatagramPacket(buffer, buffer.length);
 DatagramSocket ds = new DatagramSocket(2134);
 ds.receive(dp);
 byte[] data = dp.getData();
 String s = new String(data, 0, data.getLength());
 System.out.println("Port " + dp.getPort() + " on " + dp.getAddress()
 + " sent this message:");
 System.out.println(s);
 }
catch (IOException ex)
 {
 System.err.println(ex);
 }

 Check Your Progress 3

1) Write a program to print the address of your local machine and Internet web site

rediff.com and webduniya.com.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Give a brief explanation of TCP Client/Server Interaction.
……………………………………………………………………………………

……………………………………………………………………………………

 ……………………………………………………………………………………

 69

Networking Features 3) Differentiate between TCP or UDP Protocols.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

4) Write a program, which does UDP Port scanner by checking out various port
numbers status (i.e.) Are they occupied or free?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………

3.8 SUMMARY

You have learnt that Java provides stream sockets and datagram sockets. With stream
sockets a process establishes a connection to another process. While the connection is
in place, data flows between the processes in continuous streams.

Stream sockets provide connection-oriented service. The TCP protocol is used for this
purpose. With datagram sockets individual packets of information are transmitted.
UDP protocol is used for this kind of communication. Stream based connections are
managed with Sockets objects.

Datagram packets are used to create the packets to send and receive information using
Datagram Sockets. Connection oriented services can be seen as your telephone service
and connection –less services can be seen as Radio Broadcast.

Domain naming services solve the problem of remembering the long IP address of
various web sites and computers. You also have learn that there are some dedicated
Port numbers for various protocols which are known as reserved port like for FTP you
have port no. 21.

With Proxy servers you can prevent your computer not accessible to anyone you don’t
want. Your computer data cannot be traced easily if you are using proxy servers, as
the IP addresses will not be known to the second person directly.

3.9 SOLUTIONS/ANSWERS

Check Your Progress 1

1)
Client side Programming
import java.io.*;
import java.net.*;

public class Client
{
 public static final int DEFAULT_PORT = 8000;
 public static void usage()
 {
 System.out.println("Usage: java Client <hostname> [<port>]");
 System.exit(0);

 70

Applets Programming
and Advance Java
Concepts

 }
 public static void main(String[] args)
 {
 int port = DEFAULT_PORT;
 Socket s = null;

 // Parse the port specification
 if ((args.length != 1) && (args.length != 2)) usage();
 if (args.length == 1) port = DEFAULT_PORT;
 else
 {
 try
 {

 port = Integer.parseInt(args[1]);
}

 catch (NumberFormatException e)
 { usage();
 }
 }
 try
 {
 // Here is a socket to communicate to the specified host and port
 s = new Socket(args[0], port);

BufferedReader sin = new BufferedReader(new
InputStreamReader(s.getInputStream()));//stream for reading

 PrintStream sout = new PrintStream(s.getOutputStream());
 // stream for writing lines of text
 // Here ise a stream for reading lines of text from the console

BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));

 System.out.println("Connected to " + s.getInetAddress()
 + ":"+ s.getPort());
 String line;
 while(true)
 {
 // print a prompt
 System.out.print("> ");
 System.out.flush();
 // read a line from the console; check for EOF
 line = in.readLine();
 if (line == null) break;
 // Send it to the server
 sout.println(line);
 // Read a line from the server.
 line = sin.readLine();
 // Check if connection is closed (i.e. for EOF)
 if (line == null)
 {
 System.out.println("Connection closed by server.");
 break;
 }
 // And write the line to the console.
 System.out.println(line);
 }
 }
 catch (IOException e)

 71

Networking Features {
 System.err.println(e);
 }
 finally
 {
 try
 {
 if (s != null)
 s.close();
 }
 catch (IOException e2) { ; }
 }
 }
}

Server Side Programming

import java.io.*;
import java.net.*;
public class Server extends Thread
{
 public final static int DEFAULT_PORT = 8000;
 protected int port;
 protected ServerSocket listen_socket;
 public static void fail(Exception e, String msg)
 {
 System.err.println(msg + ": " + e);
 System.exit(1);
 }
 // Creating a ServerSocket to listen for connections on;
 public Server(int port)
 {
 if (port == 0) port = DEFAULT_PORT;
 this.port = port;
 try { listen_socket = new ServerSocket(port);
 }
 catch (IOException e)
 {
 fail(e, "Exception creating server socket");
 }
 System.out.println("Server: listening on port " + port);
 this.start();
 }
 // create a Connection object to handle communication through the new Socket.
 public void run()
 {
 try
 {
 while(true)
 {
 Socket client_socket = listen_socket.accept();
 Connection c = new Connection(client_socket);
 }
 }
 catch (IOException e)
 {

 fail(e, "Exception while listening for connections");

 72

Applets Programming
and Advance Java
Concepts

 }
 }
 public static void main(String[] args)
 {
 int port = 0;
 if (args.length == 1)
 {
 try
 {
 port = Integer.parseInt(args[0]);
 }
 catch (NumberFormatException e)
 {
 port = 0;
 }
 }
 new Server(port);
 }
}

// A thread class that handles all communication with a client
class Connection extends Thread
 {
 protected Socket client;
 protected BufferedReader in;
 protected PrintStream out;
 // Initialize the streams and start the thread
 public Connection(Socket client_socket)
 {
 client = client_socket;
 try
 {
 in = new BufferedReader(new InputStreamReader(client.getInputStream()));
 out = new PrintStream(client.getOutputStream());
 }
 catch (IOException e)
 {
 try
 {
 client.close();
 }
 catch (IOException e2) { ; }
 System.err.println("Exception while getting socket streams: " + e);
 return;
 }
 this.start();
 }
 public void run()
 {
 String line;
 StringBuffer revline;
 int len;
 try
 {
 for(;;)
 {
 // read in a line
 line = in.readLine();

 73

Networking Features if (line == null) break;
 // reverse it
 len = line.length();
 revline = new StringBuffer(len);
 for(int i = len-1; i >= 0; i--)
 revline.insert(len-1-i, line.charAt(i));
 // and write out the reversed line
 out.println(revline);
 }
 }
 catch (IOException e) { ; }
 finally
 {
 try
 {
 client.close();
 }
 catch (IOException e2) {;}
 }
 }
}

Output :

In the output screen you can see that that server is running and listening to on port
number 8000.

At the client side you can see that whenever you will write a string as “Hello Good
Morning”
Then the string goes to server side and the server reverses it as the reverse function is
written on the server.

2) In Table given below Socket type protocols and their description is given:

Table 1:Types of Sockets

Socket type Protocol Description

SOCK_STREAM Transmission
Control
Protocol (TCP)

The stream socket (SOCK_STREAM)
interface defines a reliable connection-
oriented service. Data is sent without
errors or duplication and is received in the
same order as it is sent.

 74

Applets Programming
and Advance Java
Concepts

SOCK_DGRAM User Datagram
Protocol (UDP)

The datagram socket (SOCK_DGRAM)
interface defines a connectionless service
for datagrams, or messages. Datagrams are
sent as independent packets. The reliability
is not guaranteed, data can be lost or
duplicated, and datagrams can arrive out of
order. However, datagram sockets have
improved performance capability over
stream sockets and are easier to use.

SOCK_RAW IP, ICMP,
RAW

The raw socket (SOCK_RAW) interface
allows direct access to lower-layer
protocols such as Internet Protocol (IP).

Note:

The type of socket you use is determined by the data you are transmitting:

• When you are transmitting data where the integrity of the data is high priority,
you must use stream sockets.

• When the data integrity is not of high priority (for example, for terminal
inquiries), use datagram sockets because of their ease of use and higher
performance capability.

3) There are two communication protocols that one can use for socket
programming: datagram communication and stream communication.

Datagram communication:

The datagram communication protocol, known as UDP (user datagram protocol), is a
connectionless protocol, meaning that each time you send datagrams, you also need to
send the local socket descriptor and the receiving socket’s address. As you can tell,
socket address is required each time a communication is made.

Stream communication:

The stream communication protocol is known as TCP (Transfer Control Protocol).
Unlike UDP, TCP is a connection-oriented protocol. In order to do communication
over the TCP protocol, a connection must first be established between the pair of
sockets. While one of the sockets listens for a connection request (server), the other
asks for a connection (client). Once two sockets have been connected, they can be
used to transmit data in both (or either one of the) directions.

Check Your Progress 2

1. Using an anonymous proxy server you don’t give anybody a chance to find out
your IP address to use it in their own interests. We can offer you two ways to
solve your IP problem:

i) Secure Tunnel - a pay proxy server with plenty of features. Effective for
personal use, when your Internet activities are not involved in very active
surfing, web site development, mass form submitting, etc. In short, Secure
Tunnel is the best solution for most of Internet users. Ultimate protection of
privacy - nobody can find out where you are engaged in surfing. Blocks all
methods of tracking. Provides an encrypted connection for all forms of web
browsing, including http, news, mail, and the especially vulnerable IRC and
ICQ. Comes with special totally preconfigured software.

http://www.publicproxyservers.com/cgi-bin/out.cgi?a=st

75

Networking Features ii) ProxyWay - a proxy server agent which you use together with your web
browser to ensure your anonymity when you surf the Internet. It contains a
database of anonymous proxy servers and allows you to easily test their
anonymity. Using a network of publicly accessible servers ProxyWay shields
your current connection when you visit websites, download files, or use web-
based e-mail accounts.

2) Our own small proxy list is also a good place to start with if you are a novice.

 There are two types of Domain Name Servers: primary and secondary.

A primary server maintains a set of configuration files that contain information for the
subset of the name space for which the server is authoritative. For example, the
primary server for indiatimes.com contains IP addresses for all hosts in the
indiatimes.com domain in configuration files. Resource Records are the entries in the
configuration files that contain the actual data. A secondary server does not maintain
any configuration files, but it copies the configuration files from the primary server in
a process called a zone transfer. A secondary name server can respond to requests for
name resolution, and it looks just like a primary name server from a user's perspective.
Primary and secondary Domain Name Servers provide both performance and fault-
tolerance benefits because you can split the workload between the servers, and if one
goes down, the other can take over.

3)

import java.net.URL;
public class URLSplitter {
 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++) {
 try {
 java.net.URL u = new java.net.URL(args[i]);
 System.out.println("Protocol: " + u.getProtocol());
 System.out.println("Host: " + u.getHost());
 System.out.println("Port: " + u.getPort());
 System.out.println("File: " + u.getFile());
 System.out.println("Ref: " + u.getRef());
 }
 catch (java.net.MalformedURLException e) {
 System.err.println(args[i] + " is not a valid URL");
 }}
 }
}
Here's the output:

http://www.publicproxyservers.com/cgi-bin/out.cgi?a=pw

 76

Applets Programming
and Advance Java
Concepts

Check Your Progress 3

Program to print the addresses:

1)
import java.net.*;
class I_Address
{
 public static void main(String[] args) throws UnknownHostException
 {
 InetAddress Addr = InetAddress.getLocalHost() ;
 System.out.println(Addr);
 Addr = InetAddress.getByName("yahoo.com");
 System.out.println(Addr);
 InetAddress Addr1[] = InetAddress.getAllByName("indiatimes.com") ;
 for(int i = 0; i < Addr1.length; i++)
 System.out.println(Addr1[i]);
 }
}
Output:
 Run this program on your machine while connected to Internet to get proper output
otherwise UnkwonHostException will occur.
Output on the machine is:
shashibhushan/190.10.19.205
rediff.com/208.184.138.70
webduniya.com/65.182.162.66

2) TCP Client/Server Inetraction:

The Server starts by getting ready to receive client connections…

 Client Server

1. Create a TCP socket 1. Create a TCP socket
2. Establish connection 2. Assign a port to socket
3. Communicate 3. Set socket to listen
4. Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

3) In UDP, as you have read above, every time you send a datagram, you have to
send the local descriptor and the socket address of the receiving socket along with it.
Since TCP is a connection-oriented protocol, on the other hand, a connection must be
established before communications between the pair of sockets start. So there is a
connection setup time in TCP.

Once a connection is established, the pair of sockets behaves like streams: All
available data are read immediately in the same order in which they are received.

UDP is an unreliable protocol- there is no guarantee that the datagrams you have sent
will be received in the same order by the receiving socket. On the other hand, TCP is a
reliable protocol; it is guaranteed that the packets you receive are put in the order in
which they were sent.

In short, TCP is useful for implementing network services-such as remote login
(rlogin, telnet) and file transfer (FTP)- which require data of indefinite length to be
transferred. UDP is less complex and incurs fewer overheads. It is often used in

 77

Networking Features implementing client/server applications in distributed systems built over local area
networks.

In client-server applications, the server provides some service, such as processing
database queries or sending out current stock prices. The client uses the service
provided by the server, either displaying database query results to the user or making
stock purchase recommendations to an investor. The communication that occurs
between the client and the server must be reliable. That is, no data can be dropped and
it must arrive on the client side in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel those client-server
applications use on the Internet to communicate with each other. To communicate
over TCP, a client program and a server program establish a connection between
them. Each program binds a socket to its end of the connection. To communicate, the
client and the server each reads from and writes to the socket bound to the connection.

4) The LocalPortScanner developed earlier only found TCP ports. The following

program detects UDP ports in use. As with TCP ports, you must be root on
Unix systems to bind to ports below 1024.

import java.net.*;
import java.io.IOException;
public class UDPPortScanner {
 public static void main(String[] args) {
 // first test to see whether or not we can bind to ports
 // below 1024
 boolean rootaccess = false;
 for (int port = 1; port < 1024; port += 50) {
 try {
 ServerSocket ss = new ServerSocket(port);
 // if successful
 rootaccess = true;
 ss.close();
 break;
 }
 catch (IOException ex) {
 }
 }
 int startport = 1;

 if (!rootaccess) startport = 1024;
 int stopport = 65535;

 for (int port = startport; port <= stopport; port++)
 {
 try {
 DatagramSocket ds = new DatagramSocket(port);
 ds.close();
 }
 catch (IOException ex) {
 System.out.println("UDP Port " + port + " is occupied.");
 }
 }
 } }
Output

 78

Applets Programming
and Advance Java
Concepts

Since UDP is connectionless it is not possible to write a remote UDP port scanner.
The only way you know whether or not a UDP server is listening on a remote port is if
it sends something back to you.

	UNIT 3NETWORKING FEATURES
	StructurePage Nos.
	
	Stream Sockets

	Datagram Sockets
	(Check Your Progress 1
	
	URL

	Reading from and Writing to a URL Connection
	(Check Your Progress 2
	
	InetAddress
	This class is used for encapsulating numerical IP address and domain name for that address.
	Because InetAddress is not having any constructor, its objects are created by using any of the following three methods
	static InetAddress getLocalHost() throws UnknownHostException:
	returns the InetAddress object representing local host
	static InetAddress getByName() throws UnknownHostException:
	returns the InetAddress object for the host name passed to it.
	static InetAddress getAllByName() throws UnknownHostException: returns an array of InetAddresses representing all the addresses that a particular name is resolves to.
	Check Your Progress 2

	Check Your Progress 3
	
	ClientServer

