

46

Advanced Features of C ++

UNIT 3 EXCEPTION HANDLING

Structure Page Nos.

3.0 Introduction 46

3.1 Objectives 46
3.2 Exceptions in C++ Programs 46

3.3 Try, Throw and Catch Expressions 48

3.4 Specifying Exception Types 53
3.5 Summary 58

3.6 Answers to Check Your Progress 58

3.7 Further Readings 58

3.0 INTRODUCTION

In the units covered so far, we have talked about various features provided by C++ to
design different programs. The programs which are written correctly produce the

desired output when input data is supplied to them. However, in some cases programs

may behave in an unexpected manner. One of the reasons that may lead to this
situation is when we provide inappropriate input data (something that the programmer

never expected or anticipated). These situations are unexpected and that is why they

are termed exceptions. Exceptions are different from syntactical and logical errors but
they also cause the program to misbehave. Exceptions are usually encountered at run

time. In order to ensure that programs work correctly under all conditions, we have to

incorporate mechanisms to identify and handle different exceptions that may occur in

a program.

This unit introduces the nature and type of exceptions that may occur in a C++

program. It then describes the steps in exception handling. Then the syntax and use of
try, throw and catch expressions are explained with appropriate examples. This unit

tries to present a comprehensive picture of the exception handling mechanisms in C++

and their use in designing correct and robust programs.

3.1 OBJECTIVES

At the end of the unit, you should be able to:

 know what is exceptions and how to handle them;

 use try, catch and throw expressions to identify and handle exceptions;

 describe the standard exception hierarchy;

 appreciate the usefulness of exception handling mechanisms in C++; and

 write robust and fault tolerant C++ programs.

3.2 EXCEPTIONS IN C++ PROGRAMS

The term exception itself implies an unusual condition. Exceptions are anomalies that

may occur during execution of a program. Exceptions are not errors (syntactical or
logical) but they still cause the program to misbehave. They are unusual conditions

which are generally not expected by the programmer to occur. An exception in this

sense is an indication of a problem that occurs during a programs‟s execution. The

The name „exception‟

implies that the problem is

one which occurs

infrequently- if the “rule” is

that a statement normally

executes correctly, then the

“exception to the rule” is that
a problem occurs.

 47

Exception Handling typical exceptions may include conditions like divide by zero, access to an array

outside its range, running out of memory etc.

For example: Consider the following code segment:

This program reads values of variables x and y from standard input and produces

output of x divided by y, which is then displayed on the standard output. However,

please note that if the value of y read from the keyboard is „0‟, then the program

witnesses a divide by zero situation. In this case, the result will be infinite and
program terminates.

To deal with these unexpected conditions, C++ provides an exception handling
mechanism that detects and handles exceptions in a predefined way. Exception

handling mechanism was not part of the original C++ specifications. It was added

later and now almost all compilers support this feature. C++ exception handling
mechanism provide with a scheme to identify and handle predictable exceptions that

may occur during program execution. It may kindly be noted that exception handling

mechanism needs to be incorporated explicitly in the program to handle the

exceptions and that it may be able to handle only those exceptions that are provisioned
in exception handling statements.

Exceptions can be of two kinds: asynchronous and synchronous. The exceptions that
are caused by events beyond the control of the program (such as keyboard interrupts)

are called asynchronous exceptions. The other unusual conditions (such as overflow,

out of range array index) that are part of the program are called synchronous

exceptions. The C++ exception handling mechanism is designed to handle
synchronous type of exceptions only. It provides a means to detect, report and act on

an unusual condition. The exception handling mechanism C++ deals with exceptions

by performing following tasks:

a. Identify the problem (hit the exception)

b. Inform that an exception has occurred (throw the exception)
c. Exception handler catches the exception information (catch the exception)

d. Exception handler takes corrective actions (handle the exception)

These tasks are incorporated in C++ exception handling mechanism in two segments,
one to detect (try) and inform (throw) about the exception, and the other to catch the

exception and take appropriate actions to handle it.

As indicated earlier, the C++ exception handling mechanism is built upon following

three expressions:

 Try

 Throw

 Catch

include <iostream>
 int main()
 {

 int x,y;
 cout << “enter values of x & y \n”;
 cin >> x;
 cin >> y;

 cout << “result of x divided by y is:” <<

x/y;

 }

48

Advanced Features of C ++ The expression try is used to preface (enclose in braces) that block which may

generate exceptions. This block is often termed as try block. The throw expression is

invoked when an exception is detected. It informs the catch block that an exception

has occurred. The exception handling code is enclosed in catch block. The catch
block catches the exception thrown by the throw expression and handles it in a

predefined manner. The Figure 3.1 further shows the use of these three expressions

and their relationship:

Figure 3.1 : Exception Handling

3.3 TRY, THROW AND CATCH EXPRESSIONS

The keyword „try‟ is used to enclose the statements that may generate an exception.

These statements begin with a try keyword and are enclosed in braces. When the try
block encounters an exception, it uses the throw keyword to pass the information to

the exception handling block. The exception handling block is enclosed within a block

preceding the catch keyword. This catch block should immediately follow the try

block that throws the exception. The general syntax of these statements and blocks is
as follows:

………………..
………………..
try
{
 ………………
 ………………
 throw exception;
 ……………….
 ……………….
 }
catch (type arg)
{
 ………………..
 ………………..
 ………………..
 }
…………………
…………………

As some statement within the try block of the program generates an exception, it is
thrown using the throw statement. At this time, the program control transfers to the

Try block

Detects and throws
an exception

catch block

Catches and handles
the exception

Exception
object

 49

Exception Handling catch block. The throw contains an argument named exception which is passed to the

catch block as an argument. However, the catch block handles this exception only if

the arguments passed from throw matches with the argument specified in the catch

block. In case the exceptions that may be generated could be of different types, then
multiple catch blocks will be required. This can be done by writing these catch blocks

one after another. When an exception is thrown, the exception object is compared with

the argument in the catch blocks written in succession. The first catch block matching
the exception object is executed. We will see use of multiple catch blocks in the next

part of the chapter. If the exception object thrown does not match with the argument

specified in catch block, then the program gets terminated by automatic invocation of

abort() function. Sometimes exceptions are thrown from functions that are invoked
within the try block. The point at which this throw is executed is called throw point.

After an exception is thrown to the catch block, control cannot return back to the

throw point. The Figure 3.2 demonstrates this situation when a function invoked from
within the try block throws an exception.

Figure 3.2 Throw, try and catch blocks for exception handling

We present following two code segments that demonstrate use of try, throw and catch

expressions for exception handling. The first program presents a simple example of

use of a single try and catch block. The second program presents an example where
the exception is thrown from a function invoked from within the try block.

include <iostream>
int main()
{

int x,y;
cout << “enter values of x & y \n”;
cin >> x;
cin >> y;
int a = x-y;
try
{
 if (a!=0)
 {
 cout << “Result (x/a) =” << x/a;
 }
 else
 {
 throw (a);
 }
 }

Throw point

Function that
causes an exception

Try block

Invokes a function that
contains an exception

Throw
exception

catch block

Catches and handles
the exception

Invoke
function

50

Advanced Features of C ++ catch (int i)
{
 cout << “Exception caught a=” << a;
 }
return(0);
}

include <iostream>
void divide (int x, int y, int z)
{

cout << “inside function \n”;
if (x-y)!=0)
{
 int r = z/ (x-y);
 cout << “result =” << r << “\n”;
}
else
{
 throw (x-y);
}

 }

int main()
{

Try
{
 cout << inside try block \n”;
 divide (10,20,30);
 divide(10,10,20);
}
catch (int i)
{
 cout << “Caught the exception”;
}
return(0);

}

You would see that in the first program, if input values are 20 and 15 then the
program runs correctly without any exception with result being 4. On the other hand,

if input given is 10 and 10, the program would detect an exception and display it as

“0” value. Similarly, in the second program for the first invocation of divide (), the
result will be -3, whereas the second invocation will result into an exception.

The throw statement can take multiple forms:

throw (exception);

throw exception;
throw;

The first two throw statements pass the exception object to the catch handler, whereas

the third throw statement without any exception object is used to rethrow an exception
from within a catch block.

A catch handler may rethrow the exception, without handling it, to the next catch
block. This is equivalent to passing the exception to the next enclosing catch block

within the scope of try/catch sequence. Please note that a rethrown exception is not

 51

Exception Handling caught by the same catch handler or any other catch handler in that group, but by an

appropriate catch handler in the outer try/catch sequence only. This also applies to

those exceptions that may be detected within a catch handler block itself.

Multiple Catch Statements

We have seen earlier that a catch block looks like a function definition. It has a type
argument which specifies the type of exception that this catch block may handle

followed by statements (enclosed within braces) to process the exception. After

executing these statements, the control goes to the statement immediately following

the catch block. It is also possible that a program may have more than one exception
condition. In such cases multiple catch statements are needed to handle the different

types of exceptions. Now when an exception is thrown, the exception handlers are

searched in order for an appropriate match. The first handler that matches the thrown
exception object type is executed. Rest of the catch blocks are then skipped and the

control goes to first statement following the last catch block. This indicates that in

case of multiple catch blocks matching the thrown exception, only the first matching
catch block is executed. The following program demonstrates the use of multiple

catch blocks:

#include<iostream>
void test(int x)
{

try
{
 if (x==1) throw x;
 else
 if (x==0) throw „x‟;
 else
 if(x==-1) throw 1.0;
}
catch (char c)
{
 cout << “caught a character \n”;
}
catch(int m)
{
 cout << “caught an integer \n”;
}

catch(double d)
{
 cout << “caught a double \n”;
}

}

int main()
{

cout << “testing multiple catches \n”;
cout << “x==1 \n”;
test(1);
cout << “x==0 \n”;
test(0);
cout << “x==-1 \n”;
test(-1);
cout << “x==2 \n”;
test(2);

52

Advanced Features of C ++
return(0);

}

As you can see this program has multiple catch blocks, each handling exception

objects of different types. One integer, other character and the third one a double

exception argument. The last invocation of test with argument 2 does not throw any
exception and hence no catch block is invoked.

Catch all exceptions

There are many situations where it may be very difficult to anticipate in advance all

possible types of exceptions that may occur in a program. C++ provides with a

mechanism to cope with this problem in form of a catch (…) expression. This type of
catch statement catches all exceptions, unlike only one exception being caught. The

general syntax of use of this kind of catch expression is as follows:

catch(…)

{

//statements for processing

//all exceptions
}

The following example presents a case of use of this kind of catch expression:

include <iostream>
void test (int x)
{

try
{
 if (x==0) throw x;
 if (x==-1) throw „x‟;
 if (x==1) throw 1.0;
}
catch (…)
{
 cout << “caught an exception \n”;
}

}
int main()
{

cout << “testing generic catch \n”;
test (-1);
test (0);
test(1);
return(0);

}

You may see that this program prints the line “caught an exception” three times as

follows:

Output:

caught an exception

caught an exception
caught an exception

 53

Exception Handling This is because all the exceptions (x getting values -1, 0 and 1) are caught by the same

catch handler block. This is the reason why this kind of catch block is termed as catch

all expression. This property can make this kind of catch all expression to be placed as

default catch handler. This default handler may then be used to catch all those
exceptions which are not handled explicitly. However, one must be careful to place

this catch all expression in the last place of catch handlers.

 Check Your Progress 1

1) List five common examples of exceptions.

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

2) If no exceptions are thrown in a try block, where does control proceed to after the

try block completes the execution?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

3) What happens if an exception is thrown outside a try block?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

4) What does the statement throw do?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

5) What happens if several handlers match the type of thrown object?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

3.4 SPECIFYING EXCEPTION TYPES

We have seen earlier that the exception type is reported by the throw statement to the

catch handler, which then takes appropriate action on it. It is also possible to restrict a

function to throw only certain specified exceptions. This can be done by adding a

throw list clause to the function definition. The general syntax of doing this exception
type specification is as follows:

type function (arg-list) throw (type-list)

{
……………..

……………..

}

54

Advanced Features of C ++ The type-list after throw specifies the type of exceptions that may be thrown. An

attempt to throw another type of exception will cause abnormal program termination.

In case we want to prevent a function from throwing any exception at all, we may do

so by making the type-list empty, i.e., simply writing throw () in the function header
line. However, these specifications operate only when the function is called back from

a try block and it reports back the exceptions to that try block. It does not apply if

exception is thrown within the function code itself. An example to demonstrate this
scenario is as follows:

#include <iostream>
void test(int x) throw (int, double)
{

if (x==0) throw „x‟;
else
 if (x==1) throw x;
 else
 if (x==-1) throw 1.0;

}
int main()
{

try
{
 cout << :testing throw specifications \n”;
 cout << “x==0 \n”;
 test(0);
 cout << “x==1 \n”;
 test(1);
 cout << “x==-1 \n”;
 test(-1);
 cout << “x==2 \n”;
 test(2);
}
catch(cahr c)
{
 cout << “caught a character \n”;
}
catch (int m)
{
 cout << “caught an integer \n”;
}
catch (double d)
{
 cout << caught a double \n”;
}
return (0);

}

You may note that this program tries to throw a char exception object in the very first
invocation of test(). This results in an abnormal termination of the program, since the

test can throw only exceptions of type int and double.

Program Output:

testing throw specifications

x==0
caught a character

 55

Exception Handling Throwing an exception that has not been declared in a function‟s exception

specification causes a call to function unexpected. The compiler will not generate a

compilation error if a function contains a throw expression for an exception not listed

in the function‟s specification. An error occurs only when that function attempts to
throw that exception at execution time. To avoid surprises at execution time, its better

to carefully check the code to ensure that functions do not throw exceptions not listed

in their specifications.

The function unexpected calls, the function registered with the function

set_unexpected (defined in header file <exception>). If no function has been

registered in this manner, function terminate is called by default. The function
set_terminate can specify the function to invoke when terminate is called. Otherwise,

terminate calls abort, which terminates the program without calling the destructors of

any remaining objects of automatic or static storage class. This could lead to resource
leaks when a program terminates prematurely.

Exceptions and Stack Unwinding

When an exception is thrown but not caught in a particular scope, the function call

stack is “unwound” and an attempt is made to catch the exception in the next outer

try….catch block. Unwinding the function call stack means that the function in which
the exception was not caught terminates, all local variables in that function are

destroyed and control returns to the statement that originally invoked that function. If

a try block encloses that statement, an attempt is made to catch the exception. If a try
block does not enclose the statement, stack unwinding occurs again. If no catch

handler ever catches this exception, function terminate is called to terminate the

program. The following programming example demonstrates stack unwinding:

#include <iostream>

#include <stdexcept>

using namespace std;

//function3 throws runtime error

void function3() throw (runtime_error)

{
 cout << “in function3” << endl;

// no try block, stack unwinding occurs, return control to function2

 throw runtime_error (“runtime_error in function3”);
}

//function2 invokes function3
void function2() throw (runtime_error)

{

 cout << “function3 is called inside function2” << endl;

 function3(); // stack unwinding occurs, return control to function1
}

//function1 invokes function2
void function1() throw (runtime_error)

{

 cout << “function2 is called inside function1” << endl;
 function2(); //stack unwinding occurs, return control to main

}

int main()
{

 //invoke function1

56

Advanced Features of C ++ try
 {

 cout << “function1 is called inside main” << endl;

 function1();
 }

 catch (runtime_error & error)

 {

 cout << “exception occurred:” << error.what() << endl;
 cout << “ exception handled in main” << endl;

 }

}

The program will produce the following output:

function1 is called inside main

function2 is called inside function1
function3 is called inside function2

in function3

exception occurred: runtime_error in function3

exception handled in main

Exception handling and Constructors and Destructors

It is worth discussing that what happens if an exception is thrown while executing a

constructor? Since the object is not yet fully constructed, its destructor would not be
called once the program control goes out of the object‟s context. And, if the

constructor had reserved some memory before the exception was raised, then there

would be no mechanism to prevent such memory leak. Hence. Appropriate exception
handling mechanism must be implemented pertaining to the constructor routine to

handle exceptions that occur during object construction.

Where to catch the exception is another important issue here. Whether it should be
done inside the constructor block or inside the main. If we allow the exception to be

handled inside main then we would not be able to prevent the memory leak situation.

Therefore, we must catch the exception within the constructor block so that we get

chance to free up any reserved memory spaces. However, we must simultaneously
rethhrow the exception to be appropriately handled inside the main block.

Exceptions and Inheritance

Like the normal inheritance concept, various exception classes can be derived from a

common base class. If a ctach handler catches a pointer or reference to an exception

objectof a base-class type, it also can catch a pointer or reference to all objects of class
publicly derived from that base class- this allows for polymorphic processing of

related errors. Using inheritance with exceptions enables an exception handler to catch

related errors with concise notation. One approach is to catch each type of pointer or

reference to a derived-class exception object individually, but a more concise
approach is to catch pointers or references to base-class exception objects nstead.

Also, catching pointers or references to derived-class exception object individually is

error prone, especially if you forget to test explicitly for one or more of the derived-
class pointer or reference types.

Standard Library Exception Hierarchy

As we know that exceptions fall nicely into a number of categories. The C++ standard
library includes a hierarchy of exception classes. The hierarchy is headed by base-

class exception (defined in header file <exception>), which contains virtual function

what, which derived base classes can override to issue appropriate error messages.

Immediate derived classes of base class exception include runtime_error and
logic_error (both defined in header <stdexcept>), each of which has several derived

classes. Also derived from exception are the exceptions thrown by C++ operators –

for example, bad_alloc is thrown by new, bad_cast is thrown by dynamic_cast and

 57

Exception Handling bad_typeid is thrown by typeid. Including bad_exception in the throw list of a

function means that, if an unexpected exception occurs, function unexpected can

throw bad_exception rather than terminating the program‟s execution or calling

another function specified by set_unexpected. The class logic_error is the base class
of several standard exception classes that indicate errors in program logic, whereas

class runtime_error is the base class of several other standard exception classes that

indicate execution-time errors. The Figure 3.3 below presents an overview of
standard library exception classes.

Figure 3.3 Some of the Standard Library Exception Classes

 Check Your Progress 2

1) What happens if no catch handler matches the type of a thrown object?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

2) Must throwing an exception cause program termination?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

3) What happens when a catch handler throws an exception?

………………………………………………………………………………

………………………………………………………………………………

……………………………………………………………………….………

4) How do you restrict the exception type that a function can throw?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

5) What happens if a function throws an exception of a type not allowed by the
exception specification for the function?

………………………………………………………………………………

………………………………………………………………………………

………………………………………………………………………………

exception
on

runtime_error logic_error

underflow_error invalid_argument length_error out_of_range

bad_alloc bad_cast bad_type_id bad_exception

overflow_error

58

Advanced Features of C ++

3.5 SUMMARY

Exceptions are a kind of problem that may occur when a program is executed. C++

provides an exception handling mechanism to handle synchronous exceptions. An

exception is handled by a group of try, throw and catch expressions. The block that
may cause a possible exception is enclosed within a try block. The exceptional

situation occurring in the try block is reported by throw expression to an exception

handling block, called catch block. When an exception is not caught the program is

terminated. The throw expression passes the exception object to an appropriate catch
block. A program may have more than one catch block to handle different kinds of

exceptions. We can also have a catch all expression that can be used as a default

handler. A catch block may also rethrow an exception without processing it. We may
also restrict the type of exception objects that a function may throw. The try-throw-

catch mechanism in C++ is quite useful to provide for dealing with unexpected

situations that may occur at runtime in a program.

3.6 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress 1

1) Insufficient memory to satisfy a new request, array subscript out of bounds,

arithmetic overflow, division by zero, invalid function parameters.

2) The exception handlers (in the catch handlers) for that try block are skipped, and

the program resumes execution after the last catch handler.
3) An exception thrown outside a try block causes a call to terminate.

4) It passes the exception object to the catch handler. If it occurs within a catch

block, it rethrows the exception.
5) The first matching exception handler after the try block is executed.

Check Your Progress 2

1) This causes the search for a match to continue in the next enclosing try block if

there is one. As this process continues, it might eventually be determined that
there is no handler in the program that matches the type of thrown object. In this

case, program is aborted.

2) No, but it does terminate the block in which the exception is thrown.
3) The exception will be processed by a catch handler (if one exists) associated with

the try block (if one exists) enclosing the catch handler that caused the exception.

4) Provide an exception specification listing the exception type that the function can

throw.
5) Function unexpected is called to terminate the program.

3.7 FURTHER READINGS

1) E. Balaguruswamy, Object Oriented Programming with C++, Tata McGraw Hill,

2010.
2) P. Deitel and H. Deitel, C++: How to Program, PHI, 7

th
edition, 2010.

3) B. Strousstrup, Programming – Principles and Practices using C++, Addison

Wesley, 2009.

