

Expressions, Statements
and Arrays UNIT 4 EXPRESSIONS, STATEMENTS AND

ARRAYS

Structure Page Nos.

4.0 Introduction 63
4.1 Objectives 63
4.2 Expressions 63
4.3 Statements 66
4.4 Control Statements 67
4.5 Selection Statements 67
4.6 Iterative Statements 72
4.7 Jump Statements 74
4.8 Arrays 78
4.9 Summary 82
4.10 Solutions/Answers 83

4.0 INTRODUCTION

Variables and operators, which you studied in the last unit, are basic building blocks
of programs. Expressions are segments of code that perform some computations and
return some values. Expressions are formed by combining literals, variables and
operators. Certain expressions can be made into statements, which are complete units
of execution. Statements are normally executed sequentially in the order in which they
appear in the program. But there are number of situations where you may have to
change the order of execution of statements based on certain conditions, or repeat a
group of statements until certain specified condition(s) are met. Java language
supports various control statements that can be put into the following categories:
selection, iteration and jump. You will learn use of these in Java programming. An
array is a data structure supported by all the programming languages that stores
multiple values of the same type in a fixed length structure.

In this unit first we will cover about expressions and their evaluation. We will discuss
about operator precedence. Then we will cover various kinds of statements supported
in Java. At the end we will discuss arrays in Java language.

4.1 OBJECTIVES

After going through this unit, you should be able to:

• define expression;
• define and write the various kinds of statements;
• write programs using sequential, conditional, and iterative statements, and
• use array in programming.

4.2 EXPRESSIONS Arithmetic
expressions
consist of
operators,
operands,
parentheses, and
function calls.

You studied in your school mathematics about mathematical expressions, made up of
simpler terms or variables. Similarly in Java, expression is built from simpler
expressions or variables using the operators. In this section we look at the various
operators and show how they can be combined to generate expressions. Expressions
perform the work of a program. They are used to compute and to assign values to

 63

Object Oriented
Technology and Java

variables. Also, they help in controlling the execution flow of a program. The job of
an expression is to perform the computation as indicated by the elements of the
expression. Finally, it returns a value that is the result of the computation.

Definition: An Arithmetic expression is a series of variables, operators, and method
calls that evaluates to a single value. It is constructed according to the syntax of the
language.

As discussed in the previous unit, the application of operators returns a value, so that
you can say the expression is nothing but a use of operators. For example if you write
code “index++;” then ‘++’ is an operator used with variable “index” and “index++;”
is an expression.

The program given below shows some of the expressions given in bold:

.………
// primitive types
char Respond = 'Y';
boolean a Boolean = true;

// display all
System.out.println ("The largest byte value is " + largest Byte);
...

if (Character.isUpperCase (Respond))
{
 …….
}

Each of these expressions performs an operation and returns a value. As you can see,
it is explained in Table 1.

Table 1: Arithmetic expression

Expression Action Value Returned

Respond = 'Y' Assign the character 'Y' to
the character variable
Respond

The value of Respond
after the assignment is
('Y')

"The largest byte value is
" + largest Byte

Concatenate the string
"The largest byte value is "
and the value of largest
Byte converted to a string

The resulting string: The
largest byte value is 127

Character.isUpperCase
(Respond)

Call the method is Upper
Case

The return value of the
method: true

In an expression, the data type of the value returned depends on the elements used.
The expression Respond = 'Y' returns a character. Since both the operands Respond
and 'Y' are characters, the use of assignment operator returns a character value. As
you observe from the other expressions, an expression can return a boolean, a string,
and so on.

The Java programming language allows programmers to construct compound
expressions and statements from smaller expressions. It is allowed as long as the
data types required by one part of the expression matches the data types of the other.
Let us consider the following example of a compound expression:

x * y / z

64

In this example, the order in which the expression is evaluated is unimportant because
the results of multiplication and division are independent of order. However, it is not
true for all expressions. Let us consider another example, where addition and division
operations are involved. Different results will be there depending on the order of
operation i.e. whether you perform the addition or the division operation first:

Expressions, Statements
and Arrays

 x + y / 50 //ambiguous expression

The programmer can specify exactly how s/he wants an expression to be evaluated by
using balanced parentheses ‘(‘ and ‘)’. For example s/he could write:

 (x + y)/ 50 //unambiguous and recommended way

If the programmer doesn’t explicitly indicate the order of the operations in a
compound expression to be performed, it is determined by the precedence assigned
to the operators. Operators with a higher precedence get evaluated first. Let us
consider the example again; the division operator has a higher precedence than the
addition operator. Thus, the two following statements are equivalent:

x + y / 50
x + (y / 50)

Therefore, it is suggested that while writing compound expressions, you should be
explicit by using parentheses to specify which operators should be evaluated first.
This will make the code easier to read and maintain.

Table 2 shows the operator precedence. The operators in this table are listed in order
of the following precedence rule: the higher in the table an operator appears, the
higher its precedence. In an expression, operators that have higher precedence are
evaluated before operators that have relatively lower precedence. Operators on the
same line have equal precedence.

Table 2: Operators precedence

 Special operators
[] Array element reference
Member selection
(params) Function call

unary operators ++, --, +, -, ~, !

Creation or cast new (type)expression

multiplicative *, /, %

Additive +, -

Shift <<, >>, >>>

Relational <, >, <=, >=, instance of

Equality = =, !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

 65

Object Oriented
Technology and Java logical AND &&

logical OR | |

Conditional ? :

Assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

When operators of same precedence appear in the same expression, some rule must
govern which is evaluated first. All binary operators except for the assignment
operators are evaluated in left-to-right order and assignment operators are evaluated
right to left.

4.3 STATEMENTS

Statements in Java are equivalent to sentences in natural languages. A statement is a
complete unit of execution. It is an executable combination of tokens ending with a
semicolon (;) mark. A token can be any variable, constant, operator or an expression.
By terminating the expression with a semicolon (;), the following types of expressions
can be made into a statement

• Assignment expressions
• Any use of ++ or --
• Method calls
• Object creation expressions

These kinds of statements are called expression statements. Let us consider some
examples of expression statements:

piValue = 3.141; //assignment statement
counter++; //increment statement

System.out.println(piValue); //method call statement

Integer integerObject = new Integer(4); //object creation statement

In addition to these kinds of expression statements, there are two other kinds of
statements.

• A declaration statement declares a variable. Let us consider the following

examples of declaration statements.
 Integer counter;
 double xValue = 91.224;
• A control statement regulates the flow of execution of statements based on the

changes to the state of a program.

The while loop, for loop and the if statement are examples of control flow
statements. This category of statements is considered in depth in coming sections.

Blocks

A code block is a group of two or more statements between balanced braces. It is a
single logical unit that can be used anywhere. Even a single statement is allowed in
this logical unit. The following listing shows a block that is target for if statement:

if (x < y)

{ //beginning of block

66

 System.out.println("The value of x is less than y”); Expressions, Statements

and Arrays x = 0;

 } // Ending of block

In this example, if x is less than y, both statements inside the block will be executed.
Thus, both the statements inside the block form a logical unit. The key point here is
that whenever you need to logically link two or more statements, you do so by
creating a code block.

 Check Your Progress 1

1) What are the data types of the following expressions? Assuming that “i” is an

integer data type.

a) i > 0
b) i = 0
c) i++
d) (float)i
e) i == 0
f) a String" + i

2) Consider the following expression:
 i--%5>0

 What is the result of the expression, assuming that the value of i is initially 10?

3) Modify the expression of Ex 2 so that it has the same result but is easier

for programmers to read.

4.4 CONTROL STATEMENTS

The program is a set of statements, which are stored into a file. The interpreter
executes these statements in a sequential manner, i.e., in the order in which they
appear in the file. But there are situations where programmers want to alter this
normal sequential flow of control. For example, if one wants to repeatedly execute a
block of statements or one wants to conditionally execute statements. Therefore’ one
more category of statements called control flow statements is provided. In Table 3,
different categories of control statements are defined:

Table 3: Control flow statements

Statement Type Keyword
Selection If-else, switch-case
Iteration While, do-while, for
Jump Break, continue, label;, return
Exception handling Try-catch-finally, throw

Note: Although
goto is a reserved
word, currently the
Java programming
language does not
support the goto
statement.

We will cover the first three types of statements in the next three sections. The last
statement type will be covered in Unit 4 Block 2 of this course.

4.5 SELECTION STATEMENTS

Java supports two selection statements: if-else and switch. These statements allow you
to control the flow of execution based upon conditions known only during run-time.

 67

Object Oriented
Technology and Java

The if / else Statements

The “ if ” statement enables the programmer to selectively execute other statements
in the program, based on some condition. The code block governed by the “ if ” is
executed if a condition is true. Generally, the simple form of it can be written like
this:

if (expression)
{
 statement(s)
}

The following code block illustrates the if statement:

Public class If Example
 {
 public static void main (String[] args)
 {
 int x,y;
 x = 10; y = 50;
 if (x < y)
 System.out.println("x is less than y”);
 if (x > y)
 System.out.println ("x is greater than y”);
 if (x = y)
 System.out.println ("x is equal to y”);
 }
 }

If a programmer wants to perform a different set of statements when the expression is
false, s/he can use the else statement.

Let us consider another example. The following code performs different actions
depending on whether the user clicks the OK button or another button in an alert
window. To do this, programmer can use if statement along with an else statement.
The “else code block” is executed only-if “if code block” is false.

// response is either OK or CANCEL depending
// on the button pressed by the user
if (response == OK)
{
// code to perform OK action
}
else
{
// code to perform Cancel action
}

There is one more form of the else statement “else if ”. It executes a statement based
on another expression. “If statement” can have any number of companion else if
statements but at the end, only one else part will be there. Let us consider the
following example in which the program assigns a grade based on the value of a test
score: an A for a score of 90% or above, a B for a score of 75% or above, and so on:

public class If Else Example
{
 public static void main (String[] args)
 {
 int test score = 78;

68

 char grade; Expressions, Statements

and Arrays if (test score >= 90)
 {
 grade = 'A';
 }
 else if (testscore >= 75)
 {
 grade = 'B';
 }
 else if (testscore >= 60)
 {
 grade = 'C';
 }
 else if (testscore >= 50)
 {
 grade = 'D';
 }
 else
 {
 grade = 'F';
 }
 System.out.println ("Grade = " + grade);
 }
}

The output from this program is:

Grade = B

The value of testscore can satisfy more than one of the expressions in the compound
if statement: 78 >= 75 and 78 >= 60. At runtime, the system processes a compound if
statement by evaluating the conditions. Once a condition is satisfied, the appropriate
statements are executed (i.e. grade = 'B';), and control passes out of the “if statement”
without evaluating the remaining conditions.

The?: Operator

The Java programming language also supports an operator“?:” known as ternary
operator, this operator is a compact version of an if statement. It is used for making
two-way decisions. It is a combination of ?and :, and takes three operands. It is
popularly known as the conditional operator. The general form of use of the
conditional operator is as follows:

Conditional expression ? expression: expression2

The conditional expression is evaluated first. If the result is true, expression1 is
evaluated and is returned as the value of the conditional expression. Otherwise,
expression2 is evaluated and its value is returned.

if (x <= 10)
commission = 10 * x;
else
commission = 15 * x;
System.out.println("The Total commission is " + commission);

You could rewrite this statement using the?: operator:

commission = (x <= 10)? (10 * x): (15 * x);

 69

Object Oriented
Technology and Java

System.out.println ("The Total commission is " + commission);} + "case.");
When the conditional operator is used, the code becomes more concise and efficient.

The switch Statement

Java has a built-in multiway decision statement known as switch statement. The
switch statement is used to conditionally perform statements based on an integer
expression. Let us consider the following example. Using the switch statement, it
displays the name of the month, based on the value of month variable.

public class SwitchExample1
{
 public static void main(String[] args)
 {
 int month = 11;
 switch (month)
 {
 case 1: System.out.println("January"); break;
 case 2: System.out.println("February"); break;
 case 3: System.out.println("March"); break;
 case 4: System.out.println("April"); break;
 case 5: System.out.println("May"); break;
 case 6: System.out.println("June"); break;
 case 7: System.out.println("July"); break;
 case 8: System.out.println("August"); break;
 case 9: System.out.println("September"); break;
 case 10: System.out.println("October"); break;
 case 11: System.out.println("November"); break;
 case 12: System.out.println("December"); break;
 }
 }
}

The switch statement evaluates its expression and executes the appropriate case
statement. Thus, in this case it evaluates the value of month and the output of the
program is: November. It can be implemented by using an if statement:

int month = 11;
if (month == 1)
{
 System.out.println ("January");
}
 else if (month == 2)
{
 System.out.println("February");
}. . . // and so on

You can decide which statement (if or switch) to use, based on readability and other
factors.

• An “if statement” can be used to make decisions based on ranges of values or

conditions.
• A switch statement can make decisions based only on a single integer value.

The value provided to each case statement must be unique.

It is important to notice the use of the break statement after each case in the switch
statement. Each break statement terminates the enclosing switch statement, and the
flow of control continues with the first statement following the switch block.

70

The break statements are necessary because without them, the case statements fall
through. That is, without an explicit break, control will flow sequentially through
subsequent case statements.

Expressions, Statements
and Arrays

Let’s consider the following example.

public class SwitchExample2
 {
 public static void main(String[] args)
 {
 int month = 2;
 int year = 2003;
 int numDays = 0;
 switch (month)
 {
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 numDays = 31;
 break;
 case 4:
 case 6:
 case 9:
 case 11:
 numDays = 30;
 break;
 case 2:
 if (((year % 4 == 0) && !(year % 100 == 0))
 || (year % 400 == 0))
 numDays = 29;
 else
 numDays = 28;
 break;
 }
 System.out.println("Number of Days = " + numDays);
 }
 }

The output from the above program is: Number of Days = 28

Now let us see how break is used to terminate loops in branching statements and
the use of default statement at the end of the switch to handle all values that aren't
explicitly handled by one of the case statements.

int month = 11;
. . .
switch (month)
{
 case 1: System.out.println("January"); break;
 case 2: System.out.println("February"); break;
 case 3: System.out.println("March"); break;
 case 4: System.out.println("April"); break;
 case 5: System.out.println("May"); break;
 case 6: System.out.println("June"); break;
 case 7: System.out.println("July"); break;
 case 8: System.out.println("August"); break;

 71

Object Oriented
Technology and Java

 case 9: System.out.println("September"); break;
 case 10: System.out.println("October"); break;
 case 11: System.out.println("November"); break;
 case 12: System.out.println("December"); break;
 default: System.out.println("It is not a valid month!"); break;
 }

Now let us see the iterative statements.

4.6 ITERATIVE STATEMENTS

Java iteration statements are while, do-while and for. These statements enable
program execution to repeat one or more statements, i.e. they create loops. A loop
repeatedly executes the same set of instructions until a termination condition is met.

The while and do-while Statements

A while statement is used to continually execute a block of statements provided a
condition remains true. The general syntax of the while statement is:
while (expression)
{
 //body of loop
 statement
}

Here first, the while statement evaluates expression, which returns a boolean value. If
the expression returns true, then the while statement executes the statement(s) in the
body of the loop. The while statement continuously keeps on testing the expression
and executing the code block until the expression returns false.

The example program shown below, displays the table of 6 unto 10 count. Every time
while statement checks the value of count variable and displays the line for the table
until the value of count becomes greater than 10.

public class While Example
{
 public static void main (String[] args)
 {
 int count = 1;
 int product;
 System.out.println (“Table of 6”);
 while (count <= 10)
 {
 product = 6 * count;
 System.out.println (“ 6 x “ + count + “ = “ + product);
 count++;
 }
 }
}

The do-while statement

The Java programming language also provides another statement which is similar to
the while statement; the do-while statement. The general syntax of the do-while is:
do
{
 statement(s)

72

 } while (expression); Expressions, Statements

and Arrays The do-while evaluates the expression at the bottom instead of evaluating it at
the top of the loop. Thus the code block associated with a do-while is
executed at least once.
Here is the previous example program rewritten using do-while:

public class Do While Example
 {
 public static void main (String[] args)
 {
 int count = 1;
 int product;
 System.out.println(“Table of 6”);
 do
 {
 product = 6 * count;
 System.out.println(“ 6 x “ + count + “ = “ + product);
 count++;
 } while (count <= 10);
 }
}

The for Statement

The for statement provides a way to iterate over a range of values. The general form
of the for statement can be expressed as:

for (initialization; termination; increment)
 {
 statement
 }

• The initialization is an expression that initializes the loop. It is executed only

once at the beginning of the loop.
• The termination expression determines when to terminate the loop. This

expression is evaluated at the top of iteration of the loop. When the expression
evaluates to false, the loop terminates.

• The increment is an expression that gets invoked after each iteration through
the loop. All these components are optional.

Often for loops are used to iterate over the elements in an array, or the characters in a
string. The following example uses a for statement to iterate over the elements of an
array and print them:

public class For Example
{
 public static void main (String[] args)
 {
 int[] array O fInts = { 33, 67, 31, 5, 122, 77,204, 82, 163, 12, 345, 23 };
 for (int i = 0; i < arrayOfInts.length; i++)
 {
 System.out.print (array O fInts [i] + " ");
 }
 System.out.println();
 }
}

The output of this program is: 33 67 31 5 122 77 204 82 163 12 345 23.

 73

Object Oriented
Technology and Java

The programmer can declare a local variable within the initialization expression of a
for loop. The scope of this variable extends from its declaration to the end of the
block. It is recommended to declare the variable in the initialization expression in
case the variable that controls a for loop is not needed outside the loop. Declaring the
variables like i, j, and k within the for loop initialization expression limits their life
span and reduces errors.

4.7 JUMP STATEMENTS

The Java language supports three jump statements:

• The break statement
• The continue statement
• The return statement.

These statements transfer control to another part of the program.

The break Statement
The break statement has two forms: labeled and unlabeled. A label is an identifier
placed before a statement. The label is followed by a colon (:) like Statement Name:
Java Statement;
Unlabeled Form: The unlabeled form of the break statement is used with switch.
You can note in the given example, an unlabeled break terminates the enclosing
switch statement, and flow of control transfers to the statement immediately
following the switch. The unlabeled form of the break statement is also used to
terminate a for, while, or do-while loop. Let us consider the following example
program where a break is used in for loop:

public class BreakExample
 {
 public static void main (String[] args)
 {
 int [] arrayOfInts = {33, 67, 31, 5, 122, 77, 204, 82, 163, 12, 345, 23};
 int search for = 122;
 int i = 0;
 boolean foundIt = false;
 for (; i < arrayOfInts.length; i++)
 {
 if (arrayOfInts[i] == searchfor)
 {
 foundIt = true;
 break;
 }
 }
 if (foundIt)
 {
 System.out.println(searchfor + " at index " + i);
 }
 else
 {
 System.out.println(searchfor + "not in the array");
 }
 }
}

The break statement terminates the “for” loop when the value is found. The flow of
control transfers to the statement following the enclosing for, which is the print
statement at the end of the program.

74

The output of this program is: Expressions, Statements

and Arrays 122 at index 4
The unlabeled form of the break statement is used to terminate the innermost switch,
for, while, or do-while structures.

Labeled Form: The labeled form terminates an outer statement, which is identified
by the label specified in the break statement. Let us consider the following example
program, which searches for a value in a two-dimensional array. When the value is
found, a labeled break terminates the statement labeled search, which is the outer for
loop:

public class BreakWithLabelExample
 {
 public static void main (String[] args)
 {
 int[][] arrayOfInts = { { 33, 67, 31, 5 },{ 122, 77, 204, 82 },{ 163, 12, 345, 23 }
};
 int searchfor = 122;
 int i = 0;
 int j = 0;
 boolean foundIt = false;
 search:
 for (; i < arrayOfInts.length; i++)
 {
 for (j = 0; j < arrayOfInts[i].length; j++)
 {
 if (arrayOfInts[i][j] == searchfor)
 {
 foundIt = true;
 break search;
 }
 }
 }
 if (foundIt)
 {
 System.out.println (search for + " at " + i + ", " + j);
 }
 else
 {
 System.out.println (search for + "not in the array");
 }
 }
}

The output of this program is: 122 at 1, 0

The break statement terminates the labeled statement; the flow of control transfers to
the statement immediately following the labeled (terminated) statement.

The continue Statement

The continue statement is used to skip the current iteration of a for, while, or do-
while loop.

The unlabeled form of continues statement skips the remainder of this iteration of
the loop. It evaluates the boolean expression that controls the loop at the end. Let us
take the following example program in which a string buffer is checking each letter.

 75

Object Oriented
Technology and Java

If the current character is not ‘s’, the continue statement skips the rest of the loop and
proceeds to the next character. If it is ‘s’, the program increments a counter.

public class Continue Example
 {
 public static void main (String[] args)
 {

String Buffer search Str = new String Buffer ("she sell sea-shell on the sea
shore");

 int max = search Str. length ();
 int numOfS = 0;
 for (int i = 0; i < max; i++)
 {
 if (search Str. charAt(i) != 's') // we want to count only S’s
 continue;
 numOfS++;
 }
 System.out.println("Found " + numOfS + " S's in the string:");
 System.out.println (search Str);
 }
}

Here is the output of this program:

Found 6 S's in the string.
she sell sea-shell on the sea shore

The labeled form of the continue statement skips the current iteration of an outer
loop marked with the given label. The following example program uses nested loops
to search a substring within another string. Two nested loops are required: one to
iterate over the substring and one to iterate over the string being searched. This
program uses the labeled form of continue to skip an iteration in the outer loop:

 public class ContinueWithLabelExample
 {
 public static void main (String[] args)
 {
 String searchMe = "Look for a substring in me";
 String substring = "sub";
 boolean foundIt = false;
 int max = searchMe.length() - substring.length();
 test:
 for (int i = 0; i <= max; i++)
 {
 int n = substring.length();
 int j = i;
 int k = 0;
 while (n-- != 0)
 {
 if (searchMe.charAt(j++) != substring.charAt (k++))
 {
 continue test;
 }
 }
 found It = true;
 break test;
 }
 System.out.println (found It? "Found it”: "Didn't find it");
 }
}

76

Here is the output from this program: Found it Expressions, Statements

and Arrays
The return Statement

The last of Java’s jump statements is the return statement. It is used to explicitly
return from the current method. The flow of control transfers back to the caller of the
method. The return statement has two forms: one that returns a value and one that
doesn't. To return a value, simply put the value (or an expression that calculates the
value) after the return keyword:

return ++count;

The data type of the value returned by return must match the type of the method’s
declared return value. When a method is declared void, use the form of return that
doesn’t return a value like “return;”

 Check Your Progress 2
1) State True or False for the followings

a) The modulus operator (%) can be only used with integer operand.
b) If a = 10 and b = 15, then the statement x = (a > b)? a: b; assigns the value

15 to x.
c) In evaluating a logical expression of type BoolExp1 && BoolExp2

Both the Boolean expressions are not always evaluated.
d) In evaluating the expression (x == y && a < b) the boolean expression x

== y is evaluated first and then a < b is evaluated.
e) The default case is always required in the switch selection structure.
f) The break statement is required in the default case of a switch selection

structure.
g) A variable declared inside for the loop control cannot be referenced

outside the loop.
h) The following loop construct is valid

int i = 10;
while (i)
{
Statements
}

i) The following loop construct is valid
int i = 1; sum = 0;
do {Statements }
while (i < 5 || sum < 20);

2) Select appropriate answer for the followings:

a) What will be the value of x , i and j after the execution of following
 statements?

int x , i , j;
i = 9;
j = 16;
x = ++i + j++

(i) x = 25, i = 9, j = 16
(ii) x = 26, i = 10, j = 17
(iii) x = 27, i = 9, j = 16
(iv) x = 27, i = 10, j = 17

b) If i and j are integer type variables, what will be the result of the expression

i % j

 77

Object Oriented
Technology and Java

when i = 7 and j = 2?

(i) 0
(ii) 1
(iii) 2
(iv) None of the above

c) If i and j are integer type variables, what will be the result of the expression

i % j
 when i = – 16 and j = –3 ?

(i) -1
(ii) 1
(iii) 5
(iv) None of the above

d) Consider the following code:

Char c = ‘a’;
Switch (c)
{
case ‘a’ :
System.out.println(“A”);
case ‘b’ :
System.out.println(“B”);
default :
System.out.println(“C”);
}

3) Which of the following statements is True?

(i) Output will be A
(ii) Output will be A followed by B
(iii) Output will be A, followed by B, then followed by C
(iv) Illegal code.

4) What is wrong with the following program code:

 Switch (x)
 {
 case 1:
 m = 15;
 n = 20;
 case 2:
 p = 25;
 break;
 y = m + n – p;
 }

5) How is the if … else if combination more general than a switch statement?

4.8 ARRAYS

An array is an important data structure supported by all the programming languages.
An array is a fixed-length structure that stores multiple values of the same type. You
can group values of the same type within arrays. For example array name salary can
be used to represent a set of salaries of a group of employees. Arrays are supported
directly by the Java programming language but there is no array class.
The length of an array is established when the array is created (at runtime).
After creation, an array is a fixed-length structure.

78

Expressions, Statements
and Arrays

 9

An array elem
within the arra
salary of 8th em
Figure 1.

Here is an exa
displays the va

 pub
 {
 pub
 {
 in
 an
 //
 fo
 {

 }
 S
 }
}

Declaring a

The following

 Int [

An array decla

• Array’s t
• Array’s n

An array’s typ
contained with
uses int [] and
integer data. H

float[]
boolea
Object
String[

The declaratio
array elements
name refers to

 0 1 2 3 4 5 6 7 8
Indices
Figure 1: Example of an arra

ent is one of the values within an arra
y. Index counting in Java starts from
ployee in array salary, it is represent

mple program that creates the array,
lues.

lic class ArraySample

lic static void main(String[] args)

t[] anArray; // declare
Array = new int[10]; //create an

 assign a value to each array element
r (int i = 0; i < anArray.length; i++)

anArray[i] = i;
System.out.print(anArray[i] + " ");

ystem.out.println();

 Variable to refer to an Array

line of code from the sample program

] an Array; // declare an array

ration has two components:

ype
ame.

e is written type [], where type is the
in the array, and [] indicates that this
name of the array is an Array. Here,
ere are some other declarations for a

marks;
n [] gender;
[] listOfObjects;
] NameOfStudents;
n for an array variable does not alloc
. The example program must assign a
an array.

Element at index 7
Array Length = 10

y

y and is accessed by its position
 0. For example, to access the
ed by salary[7] as given in

puts some values in it, and

an array of integers
 array of integers

 and print

 declares an array variable:

 of integers

 data type of the elements
 is an array. The example program
an Array will be used to hold
rrays that hold other types of data:

ate any memory to contain the
 value to an Array before the

 79

Object Oriented
Technology and Java

Creating an Array

The programmer creates an array explicitly using Java’s new operator. The next
statement in the example program allocates an array with enough memory for ten
integer elements and assigns the array to the variable an Array declared earlier.

An Array = new int[10]; // create an array of integers

In general, when creating an array, the programmer uses the new operator, followed
by data type of the array elements, and then followed by the number of elements
desired enclosed within square brackets ('[' and ']') like:

 new element Type [array Size]

If the new statement were omitted from the example program, the compiler
would print an error and compilation would fail.

Accessing an Array Element

Let us consider the following code, which assigns values to the array elements:

 for (int i = 0; i < anArray.length; i++)
 {
 anArray[i] = i;
 System.out.print (anArray[i] + " ");
 }

It shows that to reference an array element, append square brackets to the array name.
The value between the square brackets indicates (either with a variable or some other
expression) the index of the element to access. As mentioned earlier in Java, array
indices begin at 0 and end at the array length minus 1.

Getting the Size of an Array
You can get the size of an array, by writing “arrayname.length”. Here, length is not
a method, it is a property provided by the Java platform for all arrays. The “for” loop
in our example program iterates over each element of an Array, assigning values to its
elements. The “for” loop uses the anArray.length to determine, when to terminate the
“for” loop.

Array Initializers
The Java programming language provides one another way also for creating and
initializing an array. Here is an example of this syntax:

 boolean [] answers = {true, false, true, true, false};

The number of values provided between {and} determines the length of the array.

Multidimensional array in Java
In Java also you can take multidimensional arrays as arrays of arrays. You can declare
a multidimensional array variable by specifying each additional index with a set of
square brackets. For example

float two Dim [][]= new float [2][3];

This declaration will allocate a 2 by 3 array of float to two Dim. Java also provides
the facility to specify the size of the remaining dimensions separately except the first
dimension.

80

To understand the above stated concept see the program given below in which
different second dimension size is allocated manually.

Expressions, Statements
and Arrays

class Arra_VSize
{
public static void main (String args[])
{
 int i, j, k=0;
 int twoDim [][] = new int [3][];
 twoDim[0] = new int[1];
 twoDim[1] = new int[2];
 twoDim[2] = new int[3];
 for (i= 0; i <3 ; i++)
 {
 for (j = 0; j< i+1; j++)
 {
 twoDim[i][j] = k + k*3;
 k++;
 }
 }
 for (i= 0; i <3 ; i++)
 {
 for (j = 0; j< i+1; j++)
 System.out.print(twoDim[i][j] + " ");
 System.out.println();
 }
}
}
Output of this program
0
4 8
12 16 20

 Check Your Progress 3
1) Why should switch statement be avoided?

2) Answer the following questions using the sample code given below:

String[] touristResorts = { "Whistler Blackcomb", "Squaw Valley",
"Ooty", "Snowmass", "Flower Valley", "Taos"};

a) What is the index of “Ooty” in the array?
b) Write an expression that refers to the string Ooty within the array.
c) What is the value of the expression touristResorts.length?
d) What is the index of the last item in the array?
e) What is the value of the expression touristResorts[4]?

3) The following program contains a bug. Find it and fix it.
//
// This program compiles but won't run successfully.
public class WhatHappens {
public static void main(String[] args) {
StringBuffer[] stringBuffers = new StringBuffer[10];
for (int i = 0; i < stringBuffers.length; i ++) {
stringBuffers[i].append("StringBuffer at index " + i);
}
}
}

 81

Object Oriented
Technology and Java 4.9 SUMMARY

In this unit we first discussed about expression, which is a series of variables,
operators, and method calls that evaluates to a single value. You can write compound
expressions by combining expressions as long as the types required by all of the
operators involved in the compound expression are correct. But remember Java
platform evaluates the compound expression in the order dictated by operator
precedence .We discussed three kinds of statements: expression statements,
declaration statements, and control flow statements. The second important concept we
discussed is that for controlling the flow of a program, Java has three loop constructs,
Let us summarize these constructs:

Loop constructs

Use the while statement to loop over a block of statements while a boolean
expression remains true. The expression is evaluated at the top of the loop.

•

•

•

•

•

•
•

•

•

•

•

•

Use the do-while statement to loop over a block of statements while a boolean
expression remains true. The expression is evaluated at the bottom of the loop,
so the statements within the do-while block execute at least once.
The for statement loops over a block of statements and includes an initialization
expression, a termination condition expression, and an increment expression.

Decision-Making Statements
In the case of the basic if statement, a single statement block is executed if the
boolean expression is true.
In case of an if statement with a companion else statement, the if statement
executes the first block if the boolean expression is true; otherwise, it executes
the second block of code.
Use else if to construct compound if statements.
Use switch to make multiple-choice decisions based on a single integer value.
It evaluates an integer expression and executes the appropriate case statement.

Jump Statements

Jump statements change the flow of control in a program to a labeled statement. You
label a statement by placing a legal identifier (the label) followed by a colon (:)
before the statement.

Use the unlabeled form of the break statement to terminate the innermost
switch, for, while, or do-while statement.
Use the labeled form of the break statement to terminate an outer switch, for,
while, or do-while statement with the given label.
A continue statement terminates the current iteration of the innermost loop and
evaluates the boolean expression that controls the loop.
The labeled form of the continue statement terminates the current iteration of
the loop with the given label.
Use return to terminate the current method.

And in the end we discussed an array, which is a fixed-length data structure that can
contain multiple objects of the same type. An element within an array can be accessed
by its index. Indices begin at 0 and end at the length of the array.

82

Expressions, Statements
and Arrays 4.10 SOLUTIONS/ANSWERS

Check Your Progress 1

1) a) i > 0 [boolean]

b) i = 0 [int]
c) i++ [int]
d) (float)i [float]
e) i == 0 [boolean]
f) "aString" + i [String]

2) false

3) (i-- % 5) > 0

Check Your Progress 2

1) State True or false

a) False
b) True
c) True
d) True
e) False
f) False
g) False
h) False
i) True

2) (a) (ii)

(b) (ii)
(c) (i)
(d) (ii)

3) Statement y = m + n – p; is unreachable.

4) The switch statement must be controlled by a single integer control variable

and each case section must correspond to a single constant value for the
variable. The if … else if combination allows any kind of condition after
each if. Consider the following example:

 …
 if (income < 50000)
 System.out.println (“Lower income group, Tax is nil”);
 else if (income < 60000)

 System.out.println (“Lower Middle income group, Tax is below 1000”);
else if (income < 120000)

System.out.println (“Middle income group, Tax is below 19000 ”);
else

System.out.println (“Higher income group”);

5) It refers to the way the switch statements executes its various case sections.
Each statement that follows the selected case section will be executed
unless a break statement is encountered.

 83

84

Object Oriented
Technology and Java

Check Your Progress 3

1) Sometimes it is easy to fall through accidentally to an unwanted case while

using switch statement. It is advisable to use if/else instead.

2)

a) 2.
b) Tourist Resorts[2].
c) 6.
d) 5.
e) Flower Valley

3)

The program generates a Null Pointer Exception on line 6. The program creates the
array, but does not create the string buffers, so it cannot append any text to them. The
solution is to create the 10 string buffers in the loop with new String Buffer() as
follows:

public class ThisHappens
{
public static void main(String[] args)
{
StringBuffer[] stringBuffers = new StringBuffer[10];

for (int i = 0; i < stringBuffers.length; i ++)
{
stringBuffers[i] = new StringBuffer();
tringBuffers[i].append("StringBuffer at index " + i);
}
}
}

	UNIT 4 EXPRESSIONS, STATEMENTS AND ARRAYS
	StructurePage Nos.
	
	
	Table 1: Arithmetic expression

	Value Returned

	Blocks

	(Check Your Progress 1
	1\) What are the data types of the following ex

	The if / else Statements
	The?: Operator
	The switch Statement
	The while and do-while Statements
	The for Statement
	The break Statement
	The continue Statement
	The return Statement

	1) State True or False for the followings
	
	
	Figure 1: Example of an array

	Declaring a Variable to refer to an Array
	Creating an Array
	Accessing an Array Element
	Getting the Size of an Array
	Array Initializers
	
	
	Multidimensional array in Java

	(Check Your Progress 3
	1)Why should switch statement be avoided?
	2)Answer the following questions using the sample code given below:
	3)The following program contains a bug. Find it and fix it.
	Decision-Making Statements
	Jump Statements
	
	
	
	
	Check Your Progress 1

	1)a) i > 0 [boolean]
	
	
	
	Check Your Progress 2

	2)

