

Event handlers;
Form object; and
Form array.

1ntrodul:tion to
Jav S c r i p t

4.2 JAVASCFUPT VARIABLES AND DATATYPES

Let us first see the skeleton of a JavaScript file.

<HTML>
<HEAD>

<TITLE>IGNOU </TITLE>
<SCRIPT LANGUAGE = "JavaScriptn>
</SCRIPT>

</HEAD>
<BODY>
</BODY>

</HTML>

JavaScript code should be written between the <SCRIPT> and </SCRIPT> tags. The
value LANGUAGE = "JavaScript" indicates to the browser that Javascript code has ' been used in the HTML document. It is a good programming practice to include the

i Javascript code within the <HEAD> and </HEAD> tags.

I Now let us start with variables. Variables store and retrieve data, also known as
"values". A variable can refer to a value, which changes or is changed. Variables are

subsequent characters can also be digits (0-9). Because JavaScript is case sensitive,
letters include the characters "A" through "Z" (uppercase) and the characters "a"

k through "z" (lowercase). Typically, variable names are chosen to be meaningful and
L related to the value they hold. For example, a good variable name for containing the

r total price of goods orders would be to ta lqr ice .

4.2.1 Declaring Variables

I You can declare a variable with the var statement:

var stmaine = some value

You can also declare a variable bv s i m ~ l v assirnine a value to the variable. But if vou 1

E YOU assign a value to a variable like this: I

assign to the variable is on to the right side. Thus the variable "stmame" shown above
gets the value "Hello" assigned to it.

Life span of variables ~
When you declare a variable within a function, the variable can be accessed only 91 1

Scripting Languages

sts of a sequence of digits without a leading 0 (zero). A leading 0 (zero) on
integer literal indicates it is in octal; a leading Ox (or OX) indicates

xadecimal. Hexadecimal integers can include digits (0-9) and the letters a-f
d A-F. Octal integers can include only the digits 0-7.

floating-point number can contain either a decimal fraction, an "en (uppercase
lowercase), that is used to represent "ten to the power of ' in scientific
tation, or both. The exponent part is an "e" or "E" followed by an integer,

Ise, and any statement that evaluates to a number

o or less than the item on the right

ecreases the value

Scripting 1,anguages Logical Operators

Description: The logical operators evaluate expressions and then return a true or false
value base
Operator

on the result.
Functionality Example1 Explanation

Looks at two expressions and If day = 'friday' && date=l3 then
'eturns a value of "true" if the alert("Are You Superstitious?")
:xpressions on the left and right of Compares the value of the day and the
he operator are both true value of the date. If it is true that todal

is a Friday and if it is also true that thc
date is the 13th, then an alert box pops
up with the message "Are You
I~u~erstitious?"

Looks at two expressions and I if day='f?iday'&&date=13 then
.eturns a value of "true" if either one alert("Are You Superstitious?") else if
.- but not both -- of the expressions day='friday'//date-13 then alert("Arenll
ire true. ,you glad it isn't Friday the 13th?")

Compares the value of the day and the
value of the date. If it is true that toda)
is a Friday and if it is also true that
the date is the 13th, then an alert box
pops up with the message "Are You
Superstitious?" If both are not true, the
script moves onto the next line of
code ... Which compares the value of
the day and the value of the date. If
either one -- but not both -- IS true.
then an alert box pops up with the
message "Aren't you glad it isn't Frida!
the 13th?"

CONTROL STRUCTURES

JavaScript supports the usual control structures:

The conditionals if, if. ..else, and switch;
The iterations for, while, do ... while, break, and continue;

4.4.1 Conditional Statements

Very often when you write code, you want to perform different actions for different
decisions. You can use conditional statements in your code to do this.

In JavaScript we have three conditional statements:

if statement - use this statement if you want to execute a set of code when a
condition is true
if ... else statement - use this statement if you want to select one of two sets of
code to execute
switch statement - use this statement if you want to select one of many sets of
code to execute

if(myvariable == 2) {
myvariable = 1;

) else {
myvariable = 0;

1

If the value of myvariable in Figure 4.1 is 2 then the first condition evaluates to true
and the value of myvariable is set to 1. If it is anything other than 2 then the else part
gets exeyuted.

Now let us see an example of a nested if statement in Figure 4.2. lntrod uction to

if (myT7ariable = 2) {
myvariable = 1 ;

myvariable = 3;

Switch Statement

If there exist multiple conditions, the switch statement is recommended. This is
because only one expression gets evaluated based on which control directly jumps to
the respective case.

//if myVar is 1 this is executed

//if myVar is 'sample' (or 1 , see the next paragraph)
//this is executed

//if myVar is false (or 1 or 'sample', see the next paragraph)
//this is executed

//if myVar does not satisfy any case, (or if it is
111 or 'sample' or false, see the next paragraph)
//th~s is executed

As shown in Figure 4.3, depending on the value of "myvar", the statement of the
respective case gets executed. If a case is satisfied, the code beyond that case will also
be executed unless the break statement is used. :n the above example, if myVar is 1,
the code for case 'sample', case 'false' and 'default' will all be executed as well.

4.4.2 Loop Statements

A loop is a set of commands that executes repeatedly until a specified condition is
met. JavaScript supports two loop statements: for and while. In addition, you can use
the break and continue statements within loop statements. Another statement, for ... in,
executes statements repeatedly but is used for object manipulation.

For Statement

A for loop repeats until a specified condition evaluates to false. The JavaScript f o r
loop is similar to the Java and C for loops. A for statement looks as follows:

for ([iniriul-expression]; [condition]; [incremenz-expi.ession]) {

When a for loop executes, the following sequence of operations occur:

1 . The initializing expression initial-expression, if any, is executed. This expression
usually initializes one or more loop counters, but the syntax allows an expression
of any degree of complexity.

2. The coiidition expression is evaluated. If the value of condi~ioii is true, the loop

Scripting Languages statements execute. If the value of condition is false, the loop terminates.
3. The update expression increment-expression executes.
4. The statements get executed, and control returns to step 2. Actually the syntax

provides for a single statement; when enclosed in braces ' { ' and ') ', any number
of statements are treated as a single statement.

The following function contains a for loop that counts the number of selected options
in a scrol.ling list (a select object that allows multiple selections). The for loop
declares the variable i and initializes it to zero. It checks that i is less than the number
of options in the select object, performs the succeeding if statement, and increments i
by one after each pass through the loop.

-

<HTML>
<HEAD>
<TITLE>IGNOU </TITLE>
<SCRIPT LANGUAGE = "JavaScript">
function howMany(select0bject) {

var numberSelected=O
for (var i=O; i < selectObject.options.1ength; i++) {

if (selectObject.options[i].selected==true)
numberSelected++

1
return numberselected

1
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="selectForm">

<P>Choose some music types, then click the button below:
<BRxSELECT NAME="musicTypes" MULTIPLE>

<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
<OPTION> Classical
<OPTION> Opera

</SELECT>
<P><INPUT TYPE=llbutton" VALUE="How many are selected?"
onClick="alert ('Number of options selected: ' +
howMany(document.se1ectForm.musicTypes))"~

</FORM>
</BODY>
</HTML>

While Statement

The while statement defines a loop that iterates as long as a condition remains true. In
the following example the control waits until the value of a text field becomes "go":

while (Document.Form 1 .Text1 .Value != "go") {Statentents)

In a while loop the condition is evaluated first before executing the statements.
For In Statement

This is a different type of loop, used to iterate through the properties of an object or
the elements of an array. For example consider the following statement that loops
through the properties of the Scores object, using the variable x to hold each property
in turn:

For (x in Scores) {Statements)

w Break Statement Introc1111:tiotl to
.la\ script

The break statement is used for terminating the current Whilc or For loop and then
transferring program control to the statement just after the terminated loop. The
following function has a break statement that terminates the while loop when i
becomes equal to 3, and then returns the value 3 * x.

function lestBreak(x) (

var i = 0
while (i < 6) {

if (i -= 3)
break

i ++

w Continue Statement

A continue statement terminates execution of the block of statements in a while or for
loop and continues execution of the loop with the next iteration. In contrast to the
break statement, continue does not terminate the execution of the loop entirely.

In a while loop, it jumps back to the condition.
In a for loop, it jumps back to the incl-ement-expression.

The following example shows a While loop with a continue statement that executes
when the value of i becomes equal to three. Thus, t~ takes on the values one, three,
seven, and twelve.

if (i == 3) continue
n += i

4.5 OBJECT-BASED PROGRAMMING

JavaScript is a very powerful object-based (or prototype-based) language. JavaScript
is not a full-blown OOP (Object-Oriented Programming) language, such as Java, but
it is an object-based language. Objects not only help you better understand how
JavaScript works, but in large scripts, you can create self-contained JavaScript
objects, rather than the procedural code you may be using now. This also allows you
to reuse code more oAen.

4.5.1 Functions

Functions are the central working units of JavaScript. Almost all the scripting code
uses one or more functions to get the desired result. If you want your page to provide
certain a user-defined functionality, then functions are a convenient way of doing so.
Therefore it is important that you understand what a function is and how it works.

First let us understand the basic syntax of a function; then we look at how to call it.
After that you must know how to pass arguments and why you need to do this.

Scripting Languages Finally, you have to know how to return a value from a function. The following code
shows the implementation of a function.

function example(a,b)
{

number += a;
alert('You have chosen: ' + b);

1

The function made above can be called using the following syntax.
Example(1 ,'house1)

In fact, when you define the function Example, you create a new JavaScript command
that you can call from anywhere on the page. Whenever you call it, the JavaScript
code inside the curly brackets {) is executed.

Calling the Function

You can call the function from any other place in your JavaScript code. After the
function is executed, the control goes back to the other script that called it.
alert('Exan1ple 1 : the House');
example(1 ,'house1);
(write more code)

So this script first generates an alert box, then calls the function and after the function
is finished it continues to execute the rest of the instructions in the calling code.

Arguments

You can pass arguments to a function. These are variables, either numbers or strings,
which are used inside the function. Of course the output of the function depends on
the arguments you give it.

In the following example we pass two arguments, the number 1 and the string 'house':
example(1 ,'house');

When these arguments arrive at the function, they are stored in two variables, a and b.
You have to declare these in the function header, as you can see below.
function example(a,b)

<HTML>
<HEAD>

<TITLE>IGNOU </TITLE>
<SCRIPT Language = "JavaScriptW>

function example(a, b)
{

var number;
number += a ;
alert('You have chosen: ' + b);

</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="selectForm">

<P>Click the button below:

<P><INPUT TYPE="button" VALUE="Click" onClick="example(l ,'house')">

</FORM>

-7

</BODY> Introduction to
JataScript

It adds 1 to number and displays "You have chosen: house". Of course, if you call the
function like example (5,'palacet), then it adds 5 to number and displays "You have
chosen: palace". The output of the function depends on the arguments you give it.

Returning a value

One more thing a function can do is to return a value. Suppose we have the following

<HEAD>
<TITLE>IGNOU </TITLE>
<SCRIPT Language = "JavaScript">
function calculate(a,b,c)

d = (a+b) * c;
return d;

</SCRIPT>

<SCRIPT Language = "JavaScriptM>
var x = calculate(4,5,9);
var y = calculate((x/3),3,5);
alerl('calculate(4,5,9) = ' +x + ' and ' + ' calculate((x/3),3,5) = ' + y);

</SCRIPT>

Figure 4.2: Using a Function that Returns a Value

Scripting Languages The function shown in Figure 4.8 calculates a number from t

he numbers you pass to it. When it is done it returns the result of the calculation. The
function passes the result back to the function that called it. When the funct~on
executes the return statement, control goes back to the calling program without
executing any more code in the function, if there is any.

The calling of the function is done using the following two statements in the figure:

var x = calculate(4,5,9);
var y = calculate((x/3),3,5);

It means that you have declared a variable x and are telling JavaScript to execute
calculate() with the arguments 4, 5 and 9 and to put the returned value (81) in x.
Then you declare a variable y and execute calculate() again. The first argument is
x/3, which means 8113 = 27, so y becomes 150.0f course you can also return strings
or even Boolean values (true or false). When using JavaScript in forms, you can write
a function that returns either true or false and thus tells the browser whether to submit
a form or not.

4.5.2 Executing Deferred Scripts

Deferred scripts do not do anything immediately. In order to use deferred commands,
you must call them from outside the deferred script. There are three ways to call
deferred scripts:

From immediate scripts, using the function mechanism
By user-initiated events, using event handlers
By clicking on links or image-map zones that are associated with the script

Calling Deferred Code from a Script

A function is a deferred script because it does not do anything until an event, a
function, a JavaScript link, or an immediate script calls it. You have probably noticed
that you can call a function from within a script. Sometimes you are interested in
calling a function from the same script, ana in other cases you might want to call it
from another script. Both of these are possible.

Calling a function from the same script is very simple. You just need to specify the
name of the function, as demonstrated in Figure 4.9.

<HTML>
<HEAD>
<TITLE>Calling deferred code from its own script</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!--
makeLine(30)
function makeLine(1ineWidth) {
document.write("<HR SIZE=" + linewidth + ">")

1
makeLme(l0)
/I ->
</SCRIPT>
</HEAD>
<BODY>
</BODY>
</HTML>

Introduction to
.fattaScript

4.5.3 Objects

A JavaScript object is an instance of datatype. Object is given a unique name and the
collectiori of properties of the corresponding object may be accessed using the dot
syntax. As a quick introduction to the concept of JavaScript objects, here is the code
that creates an instance of an object called myObj:

var myObj = new Object();
myObj.business = "Voice and Data Networking"; myObj.CE0 = "IGNOU";
myObj.ticker = "CSCO";

After having run that code (in a scope situation that allowed myObj to be accessed as
required), you could run this ...
document.write("My Object ticker symbol is " + myObj.ticker + "."); .

... and get a complete sentence in your HTML document.

Document Object

The document object is a property of the window object. This object is the container
for all HTML HEAD and BODY objects associated within the HTML tags of an
HTML document

Document Object Properties

Description
This is depreciated
Closes an output stream that was used to create a
document object
It can be used to specify style of specific tags. The Contextual
following example specified that text in blockquotes is to

I

I
be blue:
document.contextual(document.tags.blockquote).color =

"blue";
Multiple styles may be specified in the contextual
method to set the value of text in a <H3> tag that is
underlined to the color blue, for example.

!
dacument.contextual(document.tags. H3,
document.tags.U).color = "blue";

Scripting Languages ElementFromPoint(x, y) Returns the object at point x, y in the HTML document.
Getselection
open([mimeType])

write function to the document. For example
document.write("<H3>") document.writeln("This is a
Header") document.write("</H3>")

writeln(expr1 [,expr2 ... exprN]) Adds the passed values to the document appended with a
new line character.

Predefined Objects

Let us consider some of the most frequently used predefined objects provided in

Math object

In most applications we need to perform calculations, whether it is accounting
software or scientific software. Programmers are often typecast as good
mathematicians. Every mathematician needs a calculator sometimes, or in the case of
JavaScript, the Math object. If we want to calculate "2.5 to the power of 8" or
"Sin0.9" in your script, then JavaScriptls virtual calculator is what you need. The
Math object contains a number of manipulating functions:

The Math object

Returns the smaller of two values

I

Let us have Javascript perform some mathematical calculations:

iicalculate e5
Math.exp(5)

//calculate cos(2PI) Introduction to

Math.cos(2*Math.PI)
The "with" statement

If you intend to invoke Math multiple times in your script, a good statement to
remember is "with." Using it you can omit the "Math." prefix for any subsequent
Math properties/methods:

var x= sin(3.5)

var result=max(x,y)

The Date object is used to work with dates and times.

Creating a Date Instance

You should create an instance of the Date object with the "new" keyword. The
following line of code stores the current date in a variable called "my-date":

var my-date=new Date()

After creating an instance of the Date object, you can access all the methods of the
object from the "my-date" variable. If, for example, you want to return the date (from
1-3 1) of a Date object, you should write the following:

my-date.getDate()

You can also write a date inside the parentheses of the Date() object. The following
line of code shows some of the date formats available.

new Date("Month dd, yyyy hh:mm:ssM), new Date("Month dd, yyyy"), new
Date(~y,mm,dd,hh,mm,ss), new Date(yy,mm,dd), new Date(mil1iseconds)

Here is how you can create a Date object for each of the ways above:

var my-date=new Date("0ctober 12, 1988 13: 14:0OU), var my-date=new
Date("0ctober 12, 1988"), var my-date=new Date(88,09,12,13,14,00), var
my-date=new Date(88,09,12), var my-date=new Date(5OO)

Some Date Methods

Explanation
Returns a Date object
Returns thc date of a Date object (from 1-31)
Rcturns the day of a Date object (from 0-6. O=Sunday,

I =Monday, etc.)
(ictMonth() Returns the month of a Date objcct (from 0-1 1 . O=January,

I=February, etc.)
1
GetHours() Returns the hour of the Date object (from 0-23)
GetMinutes() Returns the minute of the Date object (from 0-59)
GetSeconds() Returns the second of the Date object (from 0-59)

Returns the current date, including date, month, and year. Note that the getMonth
method returns 0 in January, 1 in February etc. So add 1 to the getMonth method to

Scripting Languages display the correct date.
<HTML>
<BODY>
<SCRIPT LANGUAGE="JAVASCRIPTY
var d = new Date()
document.write("date = ")
document.write(d.getDate())
document.write(".")
document.write(d.getMonth() + 1)
document.write(".")
document.write(d.getFul1Y ear())
document.write("time = ")
document. write(d.getHours())
document.write(".")
document.write(d.getMinutes() + 1)
document.write(".")
document.write(d.getSeconds())
</SCRIPT>

Figure 4.3: Using the Date Object

Time
Returns the current time for the timezone in hours, minutes, and seconds as shown in
Figure 5.1 1. To return the time in GMT use getUTCHours, getUTCMinutes etc.

Array Object

An Array object is used to store a set of values in a single variable name. Each value
is an element of the array and has an associated index number. You can refer to a
particular element in the array by using the name of the array and the index number.
The index number starts at zero.

You create an instance of the Array object with the "new" keyword.

var family-names=new Array(5)

The expected number of elements goes inside the parentheses, in this case it is 5.

You assign data to each of the elements in the array like this:

family-names[O]="Sharma" family-names[l]="Singh" family-names[2]="Gi11"
family_names[3]="Kumar" family_names[4]="Khan"

The data can be retrieved from any element by using the index of the array element

Methods Explanation
Lcngth Returns the number of elements in an array. This property is assigned a value

when an array is created
reverse() Returns the array reversed
slice() Returns a specified part of the array
Sort() Returns a sorted array

Method Summary for Hist&y Object
Back() Loads the previous URL in the history list.

, Forward() Loads the next URL in the history list.
1 Go() Loads a URL from the history list.

Method Description
reload The reload method forces a reload of the windows current document, i.e.

the one contained in the Location.href
Replace The replace method replaces the current history entry with the specified

URL. After calling the replace method to change the history entry, you
cannot navigate back to the previous URL using the browser's Back button.

Scripting Languages Description

URL.

ppecifies any query lnformat~on In an HTTP URL.
Some Common Methods

Check Your Progress I

! Wr~te a JavaScr~pt code block uslng arrays and generate the current date In words
I'hls sliould Include the day. the n~onth and the year.

2 Cl'r:te JavaScr~pt code that converts the entered text to upper case.
3 Wrtte JavaScr~pt code to validate Usernarne and Password. Username and

Password are stored In variables
4 Deslgn the following Web page

Current Date & Time : on Mar 3 21 02 03 PST

4.6 MESSAGEBOX IN JAVASCRIPT

In this section, we cover the topic of dialog boxes. This topic is important for
understanding the way parameters are passed between different windows. This
mechanism is a key component of some of the new capabilities of Internet Explorer
5.5 and 6.0, such as print templates. You use dialog boxes all over. The alert box is
probably the most popular one.

4.6.1 Dialog Boxes

In this the user cannot switch to the window w~thout closing the current window.
This kind of dialog box is referred to as a modal dialog box. You create a modal
dialog box with showModalDialog().

Syntax: showModalDialog ("Message")

<HTML>
<HEAD>
<SCRIPT LANGUAGE=" JAVASCRIPT">

function fnOpenModal() {
window.showModalDialog("test.htm)

</SCRIPT>
</HEAD>
<BODY>
<FORM NAME = IGNOU>
<INPUT TYPE="button" VALUE=l1Push Me" onclick="fnOpenModal()">
</BODY>
</HTML>

4.6.2 Alert Boxes

Alert boxes can be utilized for a variety of things, such as to display when an input
field has not been entered properly, to display a message on document open or close,
or to inform someone that they have clicked a link to leave your site. Whatever the
use, the construction is essentially the same.
Syntax : alert("message")

The following example will generate a simple alert box based on clicking either a link
or a form button.

<htrnl>
<title~Codeave.com(JavaScript: Alert Box)</title>
<body bgcolor="#ffffffl>
<!-- Example of a form button that will open an alert box -->
<form>
<input type="button" value="Open Alert Box"
onClick='alert("Place your message here ... In Click OK to continue.")'>
</form>
<P>
<!-- Example of a link that will open an alert box -->
<a href='javas~ript:onClick=alert('~Place your message here ... \n Click OK to
continue. ")'>
Open Alert Box

Scripting Languages 4.6.3 Confirm Boxes

The JavaScript confirm alert box differs from a regular alert box in that it provldes
two choices to the user, OK and Cancel. Typically, you'll see confirmation boxes
utilized on links where the destination is outside the domaln of the page you are
currently on or to alert you of potentially objectionable material. The following
example will display a confirmation alert box when either a link or form button is
clicked. Once either OK or Cancel are selected an alert box will follow to d~splay
which was chosen.
<html>
<body ~~coIoF"#FFFFFF">
<title>CodeAve.com(JavaScript: Confirm Alert Box)</title>
<script language="JavaScriptW>
<!--
function confirm-entry()

{
input-box=confirm("Click OK or Cancel to Continue");
if (input-box==true)

{
N Output when OK is clicked
alert ("You clicked OK");
1

else
{
I/ Output when Cancel is clicked
alert ("You clicked cancel");

1
-->
</script>
Click <a href;"JavaScript:confirm-entry()">here
<P>
<form onSubmit="confirm-entry()">
<input type="submitW >
</form>
</body>
<html>

4.6.4 Prompt Boxes

The prompt box allows the user to enter information. The benefits of using a prompt
are fairly limited and the use of forms would often be preferred (from a user
perspective).
The prompt box title text cannot be changed and the same applies to button text. You
can have 2 lines of text using \n where the new line starts (please note that the opera
browser up to version 7 will only display 1 line of text)

The text entry field is similar to a form input type="textV. The 2 buttons are OK and
Cancel. The value returned is either the text entered or null.

The syntax for the prompt is

prompt("your message",""); (script tags omitted)
"your message","" the ,"" holds the default text value "" = empty.

ID- (0

4.7 JAVASCRIPT WITH HTML Jm-

4.7.1 Events

Events are actions that can be detected by JavaScript. An example would be the
onMouseOver event, which is detected when the user moves the mouse over an
object. Another event is the onLoad event, which is detected as soon as the page is
finished loading. Usually, events are used in combination with functions, so that the
function is called when the event happens. An example would be a function that
would animate a button. The function simply shifts two images. One image that
shows the button in an "up" position, and another image that shows the button in a
"dowr," position. If this function is called using an onMouseOver event, it will make
it look as if the button is pressed down when the mouse is moved over the image.

4.7.2 Event Handlers

An event handler executes a segment of a code based on certain events occurring
within the application. such as onLoad or onclick. JavaScript event handlers can be
divided into two parts: interactive event handlers and non-interactive event handlers.
An interactive event handler is the one that depends on user interaction with the form
or the document.

For example, onMouseOver is an interactive event handler because it depends on the
user's action with the mouse. An example of a non-interactive event handler is
onload, as it automatically executes JavaScript code without the need for user
interaction. Here are all the event handlers available in JavaScript.

onLoad and onunload

onLoad and onunload are mainly used for popups that appear when the user enters or
leaves the page. Another important use is in combination with cookies that should be
set upon arrival or when leaving your pages.

For example, you might have a popup asking the user to enter his name upon his first
arrivai to your page. The name is then stored in a cookie. Furthermore, when the
visitor leaves your page a cookie stores the current date. Next time the visitor arrives
at your page, it will have another popup saying something like: "Welcome Ajay, this
page has not been updated since your last visit 8 days ago".

Another common use of the onLoad and onunload events is in making annoying
pages that immediately open several other windows as soon as you enter the page.

OnFocus and onBlur

The onFocus event handler executes the specified JavaScript code or function on the
occurrence of a focus event. 'This is when a window, frame or form element is given
the focus. This can be caused by the user clicking on the current window, frame or
form element, by using the TAB key to cycle through the various elements on screen,
or by a call to the window.focus method. Be aware that assigning an alert box to an
object's onFocus event handler will result in recurrent alerts as pressing the 'OK'
button in the alert box will return focus to the calling element or object.

The onFocus event handler uses the Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

Scripting Languages the text box resides on a form called 'myForm0

Syntax : onfocus = script

</HEAD>
<BODY>
<FORM NAME = "myform" >
<input type="textn name="myTextU value="Give me focus" onFocus =

"changeVal()">
</BODY>
<SCRIPT LANGUAGE="JAVASCRIPT">

s l = new String(myform.myText.value)
function changeVal() {
s l = "I'm feeling focused"
document.myform.myText.value = s l .toUpperCase()
1
</SCRIPT>
</HTML>

Figure 4.5: Using the onFocus Method

onblur = script

The onBlur event handler executes the specified JavaScript code or function on the
occurrence of a blur event. This is when a window, frame or form element loses
focus. This can be caused by the user clicking outside of the current window, frame
or form element, by using the TAB key to cycle through the various elements on
screen, or by a call to the window.blur method.

The onBlur event handler uses the Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onBlur event handler to ask the user to
check that the details given are correct. Note that the first line is HTML code.

<FORM NAME = "myform" >
Enter email address <INPUT TYPE="textM VALUE="" NAME="userEmailU
onBlur=addCheck()>

<SCRIPT LANGUAGE="JAVASCRIPT">
function addcheck() (
alert("P1ease check your email details are correct before submitting")

,

OnError

The onError event handler executes the specified JavaScript code or function on the
occurrence of an error event; This happens when an image or document causes an
error during loading. A distinction must be made between a browser error, when the
user types in a non-existent URL, for example, and a JavaScript runtime or syntax
error. This event handler will only be triggered by a JavaScript error, not a browser

Apart from the onError handler triggering a JavaScript function, it can also be set to
onError="null", which suppresses the standard JavaScript error dialog boxes. To
suppress JavaScript error dialogs when calling a function using onError, the function
must return true (Example 2 below demonstrates this).

There are two things to bear in mind when using window.onerror. First, this only
applies to the window containing window.onerror, not any others, and secondly,
window.onerror must be spelt all lower-case and contained within <script> tags; it
cannot be defined in HTML (this obviously does not apply when using onError with
an image tag, as in example 1 below).

The onFocus event handler uses the Event object properties.

- type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The first example suppresses the normal JavaScript error dialogs if a problem arises
when trying to load the specified image, while Example 2 does the same, but applied
to a window, by using a return value of true in the called function, and displays a
customized message instead.

Syntax : 0bject.onError = [function name]

<script type="text/javascript" language="JavaScript">
s 1 = new String(myForm.myText.value)

Scripting Languages window.onerror=myErrorHandler
function myErrorHandler0 {
alert('A customized error message')
return true
1
</script>
<body onload=nonexistantFunc()>

Check Your Progress 2

Des~gn a Web page that d~splays a ~ ~ r l c o n i e message whenever thr page ic iosdc.d Jnd

an E x ~ t message wherlever the page 1 5 unloaded

4.8 FORMS

Each form in a document creates a form object. Since a document can contain more
than one form, Form objects are stored in an array called forms.

4.8.1 Forms Array
Using the forms[] army we access each Form object in turn and show the value of its
name property in a message box. Let us have a look at an example that uses the forms
array. Here we have a page with three forms on it.

<HTML>
<HEAD>

<SCRIPT LANGUAGE=JavaScripU
function window-onload()
{

var numberFonns = document.forms.length;
var fonnlndex;
for (fonnlndex = 0; formhdex < numberForms; formIndex++)
{

alert(document. forms[formIndex].name);
1

I
</SCRIPT>

m A D >
<BODY LANGUAGE=JavaScript onLoad="window~onload()"~

<FORM NAME="form 1 ">
<P>This is inside form 1 </P>

</FORM>
<FORM NAME="form2">

<P>This is inside forrn2</P>
</FORM>
<FORM NAME="form3">

<P>This is inside form3c/P>
</FORM>

</BODY>
</HTML>

Within the body of the page we define three forms. Each form is given a name, and
contains a paragraph of text. Within the definition of the <BODY> tag, the
window-onload() function is connected to the window object's onLoad event
handler.

<BODY LANGUAGE=JavaScript onload="return

window-onload()">

This means that when the page is loaded, our window-onload() function will be
called. The window-onload() function is defined in a script block in the HEAD of
the page. Within this function we loop through the forms[] array. Just like any other
JavaScript array, the forms[] array has a length property, which we can use to
determine how many times we need to loop. Actually, as we know how many forms
there are, we could just write the number in. However, here we are also
demonstrating the length property, since it is then easier to add to the array without
having to change the function. Generalizing your code like this is a good practice to

The function starts by getting the number of Form objects within the forms array and
stores it in the variable numberForms.

function window-onload()

var numberForms = document.forms.1ength;

Next we define a variable, formlndex, to be used in our for loop. After this comes the

var formhdex; .>

for (forn-,Index = 0; formIndex < numberForms; formIndex++)

alert(document.forms[formIndex].name);

Remember that since the indices for airays start at zero, our loop needs to go from an
index of 0 to an index of numberFom - 1. We do this by initializing the formIndex
variable to zero, and setting the condition ofthe for loop to fonnIndex <
numberForms.

Within the for loop's code, we pass the index of the desired form (that is, formlndex)
to document.forms[1, which gives us the Form object at that array index in the forms
array. To access the Form object's name property, we put a dot at the end and the
name of the property, name.

Form Object

Form is a property of the document object. This corresponds to an HTML input form
constructed with the FORM tag. A form can be submitted by calling the JavaScript
submit method or clicking the form SUBMIT button. Some of the form properties are:

Action - This specifies the URL and CGI script file name the form is to be
submitted to. It allows reading or changing the ACTION attribute of the HTML

Button - An object representing a GUI control.
Elements - An array of fields and elements in the form.
Encoding - This is a read or write string. It specifies the encoding method the form
data is encoded in, before being submitted to the server. It corresponds to the
ENCTYPE attribute of the FORM tag. The default is "application~x-www-form-
urlencoded".. Other encoding includes textlplain or multipartlform- data.
Length - The number of fields in the elements array, that is, the length of the
elements array.
Method - This is a read or write string. It has the value "GET" or "POST".
Name - The form name. Corresponds to the FORM Name attribute.

Scr ipt4 Lnnguagrs Password - An object representing a password field.
Radio - An object representing a radio button field.
Reset - An object representing a reset button.
Select - An object representing a selection list.
Submit - An object representing a submit button.
Target - The name of the frame or window to which the form submission response
is sent by the server.
Corresponds to the FORM TARGET attribute.
Text - An object representing a text field.
Textarea - An object representing a text area field.

Some of the Form Element Properties are:

Name - It provides access to an element's name attribute. It applies to all form
elements.
Type - Identifies the object's type. It applies to all form elements.
Value - Identifies the object's value. It applies to all, button, checkbox, hidden,
password, radio, reset, submit. text or textarea.
Checked - Identifies whether the element is checked. It applies to checkbox and
radio.
Default checked - Identifies whether the element is checked by default. It applies
to checkbox and radio.
Default value - Identifies the object's default value. It applies to password, submit
and textarea.
Length - Identifies the length of a select list. It applies to select.
Options - An array that identifies the options supported by the select list. It
applies to select.

Syntax : <FORM Name = "myform" Action = "mailto:subscribe@abc.com" Method
= POST Enctype = "multipart/form-data" onsubmit = "return check()" >

<HTML>
<HEAD,
<SCRIPT LANGUAGE = "javascript">
function check ()

{ if (document.myform.email.value == "") {
alert("p1ease enter your email-id");
return false; }

</SCRIPT>
</HEAD>
<BODY>
Enter your Email to subscribe : <p>
<FORM Name = "myform" Action = "mailto:subscribe@abc.com" Method = POST
Enctype = "multipart/form-data" onsubmit = "return check()" >

<Input type = "text" Name = "email">
<Input type = "submit" value = "submit">

</BODY>
</HTML>

The above code. is used for obtaining the user's email-id. In case the user clicks the
submit button without entering the email-id in the desired text field, he sees a
message box indicating that the email-id has not been entered.

114

Scripting Languages {
var y=F1 .elements~].options[i].value;
s=new String(y);
var a=s.indexOf(">");
var b=s.substring(a+ 1 ,a+3);

c=parseInt(b);
d=d+c;
1

1
1

p="Total cost of the selected items="+d;
m=m+"\n"+p;

F 1 .elements[3].value=m;

function clr(F1)
{
F1 .elements[3].value=" ";
1
</SCRIPT>
</HEAD>
<BODY>
<h2><center> Welcome to the World renowned online Fast Food
Center
 Donald Duck ! </centerx/font></h2>
<Form name="foml " ACTION = "mailto:dlc@ignou.ac.in" METHOD = POST>
Select the Menu Items of your choice and then click on the Total Cost to find the bill
amount-

<Table >
<TR valign=top ><td>
Major dishes :

<select name=? 1 " MULTIPLE onBlur="mainitem(this.form)">
coption value="Onion cheese capsicum Pizza->300" selected> Onton cheese
capsicum Pizza
<option value="Onion mushroom Pizza->200"> Onion mushroom Pizza
<option value="Chicken Tikka Pizza->460"> Chicken Tikka Pizza
<option value="Cheese Pizza->] 5 0 5 Cheese Pizza
</select>

<Ad>
<td> </td><td> </td>
<td>
Soups :

<select name="s2" MULTIPLE onBlur="mainitem(this. form)">
<option value="Tomato Soup->70"> Tomato Soup
<option value="Sweet corn Soup->8OU>Sweet corn Soup
<option value="Sweet n Sour soup->9OU>Sweet n Sour soup
<option value="Mixed veg soup->5OU>Mixed veg soup
</select>

</td>
<td> </td><td> </td>
<td>
Miscellaneous :

<select name="s3" onBlur="mainitem(this.form)">
<option value=" ">'Desserts1
<option value="Milkshakes->359Milkshakes

coption value="Soft drinks->2OU>Soft drinks Introduction to
JavaScript

coption value="Ice cream sodas->25">Softy

</td>
<td> </td><td> </td>

<TR valign=top><td>
The items selected form the Menu are :
<TEXTAREA Name="TA 1 " Rows=lO Cols=50>
</TEXTAREA>

</td>
<td> </td><td> </td>

<input type="buttonU Value="Total Cost" onClick="cal(this.form)">
<input type="button" Value="ClearU onClick="clr(this.form)">

<HR noshade>
<h2> Personal Details </center></h2>

<TR valign=top ><td>
Name:

<Input Type = "Text" Name = "txt-name" Onblur = "chk-name()">

</td>
<td> </td><td> </td>

Contact Address :

<TEXTAREA Name="TA2" Rows=3 Cols=lO>
</TEXTAREA>

<!td>
<td> </td>.=td>

Email :

<Input Type = "Text" Name = "txt-email" Onblur = "clk_email()">

<BR:.<Ad>
<td> </td>.=td> </td>

<TR valign=top ><td>
Phone :

<Input Type = "Text" Name = "txtqhone">

</td>
<td> </td><td> </td>

<Input Type = "submit" Name = "btnsubmit" Value = " Submit ">

</td>
<td> </td><td> </td>

Q 'heck Your Progress 3

. . , -.

--

!)cs,;;l; the fo!luwlng x e b pagc i l l kuch d \\a! ti;dt >electing ally option inhodwtba to

f:o!n Iht. ra?,,:~ hutton d~spla;qs !he app:on!la:e rcsu!! t : ~ the Result box. Jovrfiript

"Y 3 LA ; >A. 4
Stop 3cfresh t i Sear& Fi \o i l te~ History , Md:l

AdJrs:s r :iiooh\ur~t5\Examplsc hg5 html

Actiox~:
r Double
r Sqi~are

C lppose you havz an order t o m that updates autvr~latica!!> each time you
x r c r or clldnge a nuantit?, the LOS: [or that Iten? anci the f\-tal coct are iipdated. Each
tic-i,i nwst be \a!idat;d Tksign the ful!o-lng weh page (('ase Stud?)

Products to Ordrr:

- - , -"- Tc - - ̂p3"""' -%-"y- "- l--- -- -,
dii* J 8 - a * + l 2 f f a - 75

4.9 SUMMARY

In this unlt we have learned about the major features of JavaScript. Besides normal
programrnlng constructs, datatypes and variables, we have also discussed the most
commonly used objects. These are: Document, Math, Date, History, Location etc. The
Submit and Reset objects are used to submit the information to the server and reset
the informat~on entered, respectively. Finally, we discussed a very important object,
the Form object.

Scripting Languages
4.10 SOLUTIONS1 ANSWERS

Check Your Progress 1

<HTML>
<HEAD>
<TITLE> Date validations </TITLE>
<SCRIPT>

var monthNames = new Array(l2);
monthNames[O]== "January";
monthNames[1]= "February";
monthNames[2]= "March";
monthNames[3]= "April";
monthNames[4]= "May";
monthNames[5]= "June" ;
monthNames[6]= "July";
monthNames[7]= "August";
monthNames[8]= "September";
monthNames[9]= "October";
monthNames[lO]= "November";
monthNames[l 1]= "December";

var dayNames = new Array(7);
dayNames[O]= "Sunday";
dayNames[l 1- "Monday";
dayNames[2]= "Tuesday" ;
dayNames[3]= "Wednesday";
dayNames[4]= "Thursday";
dayNames[5]= "Friday";
dayNames[6]= "Saturday";

function customDateString (m-date)
r

var daywords = dayNames[m-date.getDay()] ;
var theday = m-date.getDate();
var themonth = monthNames[m-date.getMonth()];
var theyear = m-date.getYear();
return daywords + ", " + themonth + " " + theday + ", " + theyear;

<BODY>
<Hl>WELCOME!</HI>
<SCRIPT>

document.write(customDateString(new Date()))
</SCRIPT>
</BODY>
</HTML>

function checkData(co1umn-data) Introduction to
Javr~Script

if (column~data != "" && colurnn_data.value !=
column~data.value.toUpperCase())

column-data.value = column_data.value.toUpperCase()

</SCRIPT>
</HEAD>

<FORM>
<INPUT TYPE="textW NAME="collector" SIZE=lO

onChange="checkData(this)">
<INPUT TYPE="textW NAME="dummyN SIZE=I O>

</FORM>
</BODY>
</HTML>

<HTML>
<HEAD>
cTITLE>Password Validation</TITLE>
<SCRIPT language="JavaScriptU>

var userpassword = new Array(4);
userpassword[O]= "Ajay";
userpassword[l]= "ajay";
userpassword[2]= "Rohan";
userpassword[3]= "rohan";

function checkout()

var flag1 =O;

for (x=O; x<document.survey.elements.length; x++)

if (document.survey.elements[x].value == "")

alert("You forgot one of the required fields. Please try again") - .

var user= doc~unent.survey.elements[O] .value
var password = document.survey.elements[I].value

if(userpassword[i] == user)

if(userpasswordlj] == password)

Scripting Languages {
flag=l ;
break;
1

1
i+=2;
1

if(flag == 0)
{
alert("P1ease enter a valid user name and password")
return;
1
else
{
alert("We1come !!\nu +document.forms[O].Usemame.value);
1

return;
1
/I-->
</SCRIPT>
</HEAD>
<BODY>
<FORM ACTION="" method="POSTU NAME="suwey"
onSubmit="retum checkOut(this.form)">
<INPUT TYPE="TEXTW NAME="Usemame" SIZE=" 15" MAXLENGTH=" IS">
User Name
<BRxINPUT TYPE="PASSWORD" NAME="Pasword" SIZE=" 1 S">Password
<BRxMPUT TYPE="SUBMITN VALUE="SubmitU><MPUT TYPE="RESETU
VALUE="Start Over">
</FORM>
</BODY>
</HTML>

<HTML,
<HEAD>
<TITLE>Displaying the Date and time in the Browser</TITLE>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
hncjion begintform)

{
form-name = form;
time-out=window .setTimeout("display_date()" ,500)
}

function display-date()
{
form-name.date.value=new Date();
time~out=window.setTimeout("display~date()', 1000)
1

function display-clock()
{
document.write('<FORM
NAME=time-form><CENTERXBR>
Current Date & Time :I)

document.write(' <INPUT NAME=date size= 19 Introduction- to

value=" "</FORM></CENTER>') JnvsScript

begin(document. time-form)

</SCRIPT>

</HTML>

Check Your Progress 2

<TITLE>Creating and Using User Defined Functions</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var name = "";
function hello()

name = prompt('Enter Your Name:','Name');
a1ertCGreeting.s ' + name + ', Welcome to my page!');

function goodbye()

alert('Goodbye ' + name + ', Sorry to-see you go!');

<BODY onload="hello();" onUnload="goodbye();">

Check Your Progress 3

<TITLE>FORMS</TITLE>
<!-- This code allows to access the Form objects Elements Array I/-->

<SCRIPT Language="JavaScript">
function Ver(form 1)

v=forml .elements.length;
if (form1 .elements[3].name=="Buttonl")

alert('First form name : '+document.forms[O].name);
alert(No. of Form elements of ' +document.forms[O].name + ' = '+v);

Scripting Languages }
else if (form l .elements[4].name==1'Button2")

{
alert('Second form name : '+document. forms[l].name);
alert(Wo. of Form elements of ' +document.forms[l].name + ' = '+v);

1
for(i=O;i<v;i++)
alert(form1 .elements[i] .name+ ' is at position '+i);

1
4SCRIPT>

</HEAD>

<BODY>
<FORM Name-"Survey Form 1 ">

FLRST FORM: <ixb>Survey Form 1 <ibx/i>

First Name : <Input Type=Text Name="Text 1 " Value="">

<Input Type="radioU Name="Radial " Value=""> Fresher
<Input Type="radioW Name="RadiolU Value="">

Experienced<BRxBR>
<Input Type="ButtonV Name="Buttonl " Value="Clickl "

onClick="Ver(fonn)">
* o m >

<FORM Name="Survey Form 2">
SECOND FORM: <i> Survey Form 2 <ib></i><BRxBR>

Name : <Input Type="TextW Name="Text2" Value="">

Password : <Input Type="Password" Name="Pass2" Value="">

<BRxBR>
<Input Type="CheckBox" Name="Check 1 " Value="" > Employed
<Input Type="CheckBox" Name="Check2" Value="" > Studying

<Input Type="ButtonU Name="Button2" Value="Click2"

onClick="Ver(form)">
</FORM>
</BODY>
</HTML>

<HMTL>
<HEAD>

<TITLE>FORMS</TITLE>

<!-- This code checks the Checkbox when the button is clicked I/-->
<SCRIPT Language='JavaScriptf>
function Chk(fl)

fl .Check.checked=true;
alert(" The Checkbox just got checked ");
f l .Check.checked=false;

fl .Radio[O] .checked=true; Intrdur tion to

fl .Radio[l].checked=false;
alert(" The Radio button just got checked ");

</SCRIPT>

Client Name : <Input Type=Text Name="TextM Value="">

Client Address: <Input Type=Text Name="TextlV Value="">

Client E-mail Address :<Input Type=Text Name="Text2"

Value=" ">

<Input Type="radioV Name="Radio" Value=""> Male
<Input Type="radioU Name="RadioW Value=""> Female

<Input Type="CheckBox" Name="CheckU Value=""> Employed <BRxBR>

<Input Type="Button" Name="BtU Value="Set Element Array Value"
onClick="Chk(this.foxm)">

<TITLE> Working with Radio Buttons </TITLE>
<SCRIPT LANGUAGE="JavaScript">
funct~on calculate(form)

if(form.elements[2].checked)

form.result.value = form.entry.value * fonn.entry.value;

form.result.value = form.entry.value * 2;

<CENTER>

<BiValue:
(INPUT TYPE="text" NAME="entryH VALUE=O>
-=BR>

<SPACER Size= 190>
Action:

Scripting Languages

<SPACER Size = 225>
<INPUT TYPE="radioW NAME="actionlU VALUE="twice"

onClick="calculate(this. form);">Double

<SPACER Size = 225>
<INPUT TYPE="radio" NAME="actionl " VALUE="square"

onClick="calculate(this.form);">Square

Result:
<INPUT TYPE=text NAME="result" onFocus = "this.blur();">
</CENTER>
</FORM>
</BODY>
</HTML>

4. (Case Study)

cHTb4l)

<HEAD><TITLE>Order Form</TITLE>

<SCRIPT>

/I function to calculate the total cost field

function Total()

{ var tot = 0;

tot += (240 * document.order.qty1 .value);

tot += (270 * document.order.qty2.value);
tot += (300 * document.order.qty3.value);
tot += (600 * document.order.qty4.value);
document.order.totalcost.value = tot; }

/I function to update cost when quantity is changed

function UpdateCost(number, unitcost)

{ costname = "cost" + number; qtyname = "qty" + number;

var q = document.order[qtyname].value;

document.order[costname].value = q * unitcost;

Total();

1

I/ function to copy billing address to shipping address

function CopyAddress()

{ if (document.order.same.checked)

{ document.order.shipto.value = document.order.billto.value;

1
1
//global variable for error flag

var errfound = false;

//function to validate by length

function ValidLength(item, len)

Scripting Languages <Hl>Online Cake Order Form</Hl>

<FORM NAME="orderU onSubmit="return Validate();">

Name:

<INPUT TYPE="textU NAME="namel " SIZE=20>

Phone:

<INPUT TYPE="text" NAME="phoneW SIZE=15>

E-mail address:

<INPUT TYPE="textV NAME="emailU SIZE=20>

Shipping Address:

<TEXTAREA NAME="shiptoV COLS=40 ROWS=4 onChange="CopyAddress();">
Enter your shipping address here. </TEXTAREA>

Products to Order:

Qty: <INPUT TYPE="TEXTW NAME="qtylV VALUE="O" SIZE=4 onchange =

"UpdateCost(l,240);">

Cost: <INPUT TYPE="TEXTU NAME="costl" SIZE=6> (Rs.240) Vanilla cake

Qty: <INPUT TYPE="TEXTW NAME="qty2" VALUE="O" SIZE=4 onchange =

"UpdateCost(2,270);">

Cost: <INPUT TYPE="TEXTU NAME="cost2" SIZE=6> (Rs.270) Strawberry cake

Qty: <INPUT TYPE="TEXTW NAME="qty3" VALUE="OV SIZE=4 onchange =

"UpdateCost(3, 300);">

Cost: <INPUT TYPE="TEXTU NAME="cost3" SIZE=6> (Rs.300) Black Forest
cake

Qty: <INPUT TYPE="TEXT" NAME="qty4" VALUE="OU SIZE=4 onchange =

"UpdateCost(4,600);">

Cost: <INPUT TYPE="TEXTU NAME="cost4" SIZE=6> (Rs.600) Chocolate cake

<HR> Total Cost: <INPUT TYPE="TEXTU NAME="totalcost"
SIZE=8><HR>

Method of Payrnent:

<SELECT NAME="paybyU> <OPTION VALUE="check" SELECTED>

Check or Money Order

<OPTION VALUE="cash">Cash or Cashier's Check

<OPTION VALUE="cred~t">Credit Card (specify number)

</SELECT>
 Credit Card or Check Number::

<INPUT TYPE="TEXTW NAME="creditnoH SIZE="20">

<INPUT TYPE="SUBMITW NAME="submitW v A L u E = " s ~ ~ ~ Your Orderu>

<INPUT TYPE="RESET" V ~ ~ t f ~ = " ~ l e a r Form">

</FORM>

</BODY>

</HTML>

