90

UNIT 4 INTRODUCTION TO JAVASCRIPT

Structure Page No.
4.0 Introduction 90
4.1 Objectives 90
4.2 JavaScript Variables and Data Types 91

4.2.1 Declaring Variables
422 Data Types
4.3 Statements and Operators

92

4.4 Control Structures i 94
441 Conditional Statements
442 Loop Statements

4.5 Object-Based Programming 97

4.5.1 Functions
452 Executing Deferred Scripts
453 Objects
4.6 Messagebox in Javascript 107

4.6.1 Dialog Boxes
4.62 Alert Boxes
4.63 Confirm Boxes
464 Prompt Boxes

4.7 Javascript with HTML 109
4.7.1 Events
4.7.2 Event Handlers
48 Forms ' 112
Forms Array
49 Summary 119
4.10 Solutions/ Answers 120
4,11 Further Readings 129

4.0 INTRODUCTION

JavaScript is the programming language of the Web. It is used mainly for validating
forms. JavaScript and Java can be related to each other. There exist many other
differences between the two. The client interprets JavaScript, whereas in Java, one
can execute a Java file only after compiling it. JavaScript is based on an object model.
In this unit you will learn how to write JavaScript code and insert them into your
HTML documents, and how to make your pages more dynamic and interactive.

Besides basic programming constructs and concepts, you will also learn about Object-

‘based programming in JavaScript. We will also discuss some commonly used objects,

message boxes and forms. One of the most important parts of JavaScript is Event
handling that will allow you to write Event-driven code.

4.1 OBJECTIVES

After going through this unit you would be able to learn and use the following
features of the JavaScript:

e Operators;

Loop constructs;

Functions;

Objects such as Math object, Date object;
[nput and output boxes;

e Event handlers;
e Form object; and
e TForm array.

4.2 JAVASCRIPT VARIABLES AND DATATYPES

Let us first see the skeleton of a JavaScript file.

<HTML>
<HEAD>
<TITLE>IGNOU </TITLE>
<SCRIPT LANGUAGE = “JavaScript™>
</SCRIPT>
</HEAD>
<BODY>
</BODY>
</HTML>

JavaScript code should be written between the <SCRIPT> and </SCRIPT> tags. The
value LANGUAGE = “JavaScript” indicates to the browser that Javascript code has
been used in the HTML document. It is a 'good programming practice to include the
Javascript code within the <HEAD> and </HEAD> tags.

Now let us start with variables. Variables store and retrieve data, also known as
"values". A variable can refer to a value, which changes or is changed. Variables are
referred to by name, although the name you give them must conform to certain rules.
A JavaScript identifier, or name, must start with a letter or underscore ("_");
subsequent characters can also be digits (0-9). Because JavaScript is case sensitive,
letters include the characters "A" through "Z" (uppercase) and the characters "a"
through "z" (lowercase). Typically, variable names are chosen to be meaningful and
related to the value they hold. For example, a good variable name for containing the
total price of goods orders would be total_price.

4.2.1 Declaring Variables
You can declare a variable with the var statement:

var strname = some value

You can also declare a variable by simply assigning a value to the variable. But if you
do not assign a value and simply use the variable then it leads to an error.
Strname = some value

You assign a value to a variable like this:

var stmmame = "Hello"

Or like this:

strname = "Hello"

The variable name is on the left hand side of the expression and the value you want to
assign to the variable 1s on to the right side. Thus the variable "strname" shown above
gets the value "Hello" assigned to it.

Life span of variables

When you declare a variable within a function, the variable can be accessed only

Introduction to
JavaScript

91

Scripting Languages

92

within that function. When you exit the function, the variable is destroyed. These
variables are called local variables. You can have local variables with the same name
in different functions, because each is recognized only by the functlon in which it is
declared.

If you declare a variable outside a function, all the functions on your page can access it.
The lifetime of these variables starts when they are declared, and ends when the page is
closed.

4.2.2 Data Types

A value, the data assigned to a variable, may consist of any sort of data. However,
JavaScript considers data to fall into several possible 7ypes. Depending on the type of
data, certain operations may or may not be allowed on the values. For example, you
cannot arithmetically multiply two string values. Variables can be of these types:

Data Types Description

3 or 7.987 are the examples of Integer and floating-point numbers.

Integers can be positive, 0, or negative; Integers can be expressed in decimal
base 10), hexadecimal (base 16), and octal (base 8). A decimal integer literal
consists of a sequence of digits without a leading 0 (zero). A leading 0 (zero) on
an integer literal indicates it is in octal; a leading 0x (or 0X) indicates
hexadecimal. Hexadecimal integers can include digits (0-9) and the letters a-f

Number and A-F. Octal integers can include only the digits 0-7.

A floating-point number can contain either a decimal fraction, an "e" (uppercase
or lowercase), that is used to represent "ten to the power of" in scientific
notation, or both. The exponent part is an "e" or "E" followed by an integer,
which can be signed (preceded by "+" or "-"}. A floating-point literal must have
at least one digit and either a decimal point or "e" (or "E").
Boolean [True or False. The possible Boolean values are true and false. These are special
values, and are not usable as 1 and 0. In a comparison, any expression that
evaluates to 0 is taken to be false, and any statement that evaluates to a number
other than 0 is taken to be true.
String ['Hello World!” Strings are delineated by single or double quotation marks. (Use
single quotes to type strings that contain quotation marks.)
Object [MyObj = new Object();

Null INot the samne as zero — no value at all. A null value is one that has no value and
Reans nothing.
Undefined [A value that is undefined is a value held by a variable after it has been created,
but before a value has been assigned to it.

43 STATEMENTS AND OPERATORS

Assignment Operators
Operator Functionality Example/Explanation
= Sets one value equal to another counter=0 Sets the counter to equal the
number 0
+= [Shortcut for adding to the current iclicks +=2 Sets the variable named counter
value. to equal the current value plus two.
-= [Shortcut for subtracting from the clicks -= 2 Sets the variable named counter
current value. to equal the current value minus two.
*= [Shortcut for multiplying the current [clicks *= 2 Sets the variable named counter
value. to equal the current value multiplied by two.
/= Shortcut for dividing the current value. [clicks /=2 Sets the variable named counter
to equal the current value divided by two.

Comparison Operators

Description: The comparison operators compare two items and return a value of "true"if the
condition evaluates to true, else they return false.

Operator

Functionality

Example/Explanation

Returns a true value if the items are the same

Counter == 10 Returns the
value "true” if the counter's
value is currently equal to the
number 10

Retuins a true value if the items are not the same

ICounter '= 10 Returns the
value "true" if the counter's
value is any value except the

values, and return a single value.

umber 10
> Returns a true value if the item on the left is greater jcounter>10 Returns the value
than the item on the right “true" if the counter's value is
larger than the number 10
>= Returns a true value if the item on the left is equal jcounter>=10 Returns the
to or greater than the item on the right value "true" if the counter's
value is equal to or larger
than the number 10
< Returns a true value if the item on the leftis less [counter<10 Retumns the value
than the item on the right "true" if the counter's value is
[smaller than the number 10
<= Returns a true value if the item on the left is equal [counter<=10 Returns the
to or less than the item on the right value "true" if the counter’s
value is equal to or less than
the number 10
Computational Operators
Description: The computational operators perform a mathematical function on a value or

Operator Functionality Example/Explanation
+ Adds two values together ounter+2 Returns the sum of the counter plus 2

Subtracts one value from
another

counter-2 Returns the sum of the counter minus
D

Multiplies two values

icounter*10 Returns the result of the variable
times 10

decreases the value

/ Divides the value on the left by jcounter/2 Divides the current value of the
the one on the right and returns |counter by 2 and returns the result
the result
++X Increments the value, and then H-+counter Looks at the current value of the
h‘eturns the result counter, increments it by one, and then returns
the result. If the counter has a value of 3, this
expression returns the value of 4.
X++ Returns the value, and then counter++ Returns the value of the counter, then
increments the value increments the counter. If the counter has a value
of 3, this expression returns the value of 3, then
sets the counter value to 4.
-X Decreases the value, and then |--counter Looks at the current value of the
returns the result counter, decreases it by one, and then returns the
result. 1f the counter has a value of 7, this
expression returns the value of 6.
X-- Returns the value, and then counter-- Returns the value of the counter, then

decreases the counter value. 1f the counter has a
ivalue of 7, this expression returns the value of 7,
hen sets the counter value to 6.

Introduction to
JavaScript

93

Scripting I.anguages

94

Logical Operators
Description: The logical operators evaluate expressions and then retum a true or false
ivalue based on the result.

Operator Functionality Example/ Explanation
Looks at two expressions and If day = 'friday' & & date=13 then
returns a value of "true" if the alert("Are You Superstitious?™)
&& jexpressions on the left and right of |Compares the value of the day and the
the operator are both true value of the date. If it is true that today

is a Friday and if it is also true that the
date is the 13th, then an alert box pops
up with the message "Are You
Superstitious?"

Looks at two expressions and if day="friday'& &date=13 then

I returns a value of "true” if either one lalert(" Are You Superstitious?") else if
-- but not both -- of the expressions |day='friday'||date=13 then alert(" Aren't
are true. Llyou glad it isn't Friday the 13th?")
Compares the value of the day and the
value of the date. [f it is true that today
is a Friday and if it is also true that
the date is the 13th, then an alert box
pops up with the message "Are You
Superstitious?" If both are not true, the
script moves onto the next line of
code... Which compares the value of
the day and the value of the date. If
either one -- but not both -- is true,
then an alert box pops up with the
message "Aren't you glad it isn't Friday

the 13th?"

44 CONTROL STRUCTURES

JavaScript supports the usual control structures:

¢ The conditionals if, if...else, and switch;
¢ The iterations for, while, do...while, break, and continue;

4.4.1 Conditional Statements

Very often when you write code, you want to perform different actions for different
decisions. You can use conditional statements in your code to do this.

In JavaScript we have three conditional statements:

e if statement - use this statement if you want to execute a set of code when a
condition 1s true

¢ if. else statement - use this statement if you want to select one of two sets of
code to execute

e switch statement - use this statement if you want to select one of many sets of
code to execute

if(myVariable ==2) {
myVariable = 1;

} else {
myVariable = 0;

}

If the value of myVariable in Figure 4.1 is 2 then the first condition evaluates to true
and the value of myVariable is set to 1. If it is anything other than 2 then the else part
gets executed.

Now let us see an example of a nested if statement in Figure 4.2. Introduction to

JavaScript
if (my*7ariable = 2) {
myVariable = 1;
} else {
If (myVariable == 5) {
myVariable = 3;
} else {
myVariable = 4;
}

}

Switch Statement

If there exist multiple conditions, the switch statement is recommended. This is

because only one expression gets evaluated based on which control directly jumps to

the respective case.

swi{ch(myVar) {

case 1:
/if myVar is 1 this is executed

case 'sample':
/f myVar is 'sample’ (or 1, see the next paragraph)
//this is executed

case false:
/if myVar is false (or 1 or 'sample’, see the next paragraph)
//this is executed

default:
//if myVar does not satisfy any case, (or if it is
/11 or 'sample’ or false, see the next paragraph)
/ithis is executed

}

As shown in Figure 4.3, depending on the value of “myvar”, the statement of the

respective case gets executed. If a case is satisfied, the code beyond that case will also

be executed unless the break statement is used. In the above example, if myVaris 1,

the code for case 'sample’, case ‘false’ and ‘default’ will all be executed as well.

4.4.2 Loop Statements

A loop is a set of commands that executes repeatedly until a specified condition is

met. JavaScript supports two loop statements: for and while. In addition, you can use

the break and continue statements within loop statements. Another statement, for...in,
executes statements repeatedly but is used for object manipulation.

e For Statement

A for loop repeats until a specified condition evaluates to false. The JavaScript for

loop is similar to the Java and C for loops. A for statement looks as follows:

for ([initial-expression]; [condition]; [increment-expression]) |

Statements

}

When a for loop executes, the following sequence of operations occur:

1. The initializing expression initial-expression, if any, is executed. This expression
usually initializes one or more loop counters, but the syntax allows an expression
of any degree of complexity.

2. The condition expression is evaluated. If the value of condition is true, the loop 95

Scripting Languages

96

statements execute. If the value of condition is false, the loop terminates.

The update expression increment-expression executes.

4. The statements get executed, and control returns to step 2. Actually the syntax
provides for a single statement; when enclosed in braces ‘{* and ‘}°, any number
of statements are treated as a single statement.

b

The following function contains a for loop that counts the number of selected options
in a scrolling list (a select object that allows multiple selections). The for loop
declares the variable i and initializes it to zero. It checks that i is less than the number
of options in the select object, performs the succeeding if statement, and increments i
by one after each pass through the loop.

<HTML>
<HEAD>
<TITLE>IGNOU </TITLE>
<SCRIPT LANGUAGE = “JavaScript™>
function howMany(selectObject) {
var numberSelected=0
for (var i=0; i < selectObject.options.length; i++) {
if (selectObject.options[i].selected==true)

numberSelected++
}
return numberSelected
}
</SCRIPT>
</HEAD>
<BODY>

<FORM NAME="selectForm">
<P>Choose some music types, then click the button below:

<SELECT NAME="musicTypes" MULTIPLE>
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age
<OPTION> Classical
<OPTION> Opera
</SELECT>
<P><INPUT TYPE="button" VALUE="How many are selected?"
onClick="alert (‘Number of options selected: ' +
howMany(document.selectForm.musicTypes))">
</FORM> o
</BODY>
</HTML>

e While Statement

The while statement defines a loop that iterates as long as a condition remains true. In
the following example the control waits until the value of a text field becomes "go":
while (Document.Form1.Textl.Value !="go") {Statements }

In a while loop the condition is evaluated first before executing the statements.
e For In Statement

This is a different type of loop, used to iterate through the properties of an object or
the elements of an array. For example consider the following statement that loops
through the properties of the Scores object, using the variable x to hold each property
in turn:

For (x in Scores) {Statements}

. Break Statement l‘ntrodlmtiv(m. to
JavaScript

The break statement is used for terminating the current While or For loop and then

transferring program control to the statement just after the terminated loop. The

following function has a break statement that terminates the while loop when i

becomes equal to 3, and then returns the value 3 * x.

function testBreak(x) {

vari=0
while (1 < 6) {
if (1==3)
break
1++
h

return 1¥x

e Continue Statement

A continue statement terminates execution of the block of statements in a while or for
loop and continues execution of the loop with the next iteration. In contrast to the
break statement, continue does not terminate the execution of the loop entirely.
[nstead,

o Ina while loop, it jumps back to the condition.
e Ina for loop, it jumps back to the increment-expression.

The following example shows a While loop with a continue statement that executes
when the value of i becomes equal to three. Thus, #» takes on the values one, three,
seven, and (welve.

1=0

n=0

while (i < 5) {
1++
if (1 == 3) continue
n+=1

4.5 OBJECT-BASED PROGRAMMING

JavaScript is a very powerful object-based (or prototype-based) language. JavaScript
1s not a full-blown OOP (Object-Oriented Programming) language, such as Java, but
it is an object-based language. Objects not only help you better understand how
JavaScript works, but in large scripts, you can create self-contained JavaScript
objects, rather than the procedural code you may be using now. This also allows you
to reuse code more often.

4.5.1 Functions

Functions are the central working units of JavaScript. Almost all the scripting code
uses one or more functions to get the desired result. If you want your page to provide
certain a user-defined functionality, then functions are a convenient way of doing so.
Therefore it is important that you understand what a function is and how it works.

First let us understand the basic syntax of a function; then we look at how to call it.
After that you must know how to pass arguments and why you need to do this. , 97

Scripting Languages

98

Finally, you have to know how to return a value from a function. The following code
shows the implementation of a function.

function example(a,b)
{
number += a;
alert("You have chosen: ' +b);

}

The function made above can be called using the following syntax.
Example(1,'house’)

In fact, when you define the function Example, you create a new JavaScript command
that you can call from anywhere on the page. Whenever you call it, the JavaScript
code inside the curly brackets {} is executed.

Calling the Function

You can call the function from any other place in your JavaScript code. After the
function is executed, the control goes back to the other script that called it.
alert('Example 1: the House");

example(1,'house’);

(write more code)

So this script first generates an alert box, then calls the function and after the function
is finished it continues to execute the rest of the instructions in the calling code.

Arguments

You can pass arguments to a function. These are variables, either numbers or strings,
which are used inside the function. Of course the output of the function depends on
the arguments you give it.

In the following example we pass two arguments, the number | and the string 'house”:
example(1,'house’);

When these arguments arrive at the function, they are stored in two variables, a and b.
You have to declare these in the function header, as you can see below.
function example(a,b)

<HTML>
<HEAD>
<TITLE>IGNOU </TITLE>
<SCRIPT Language = "JavaScript"™>
function example(a, b)
{
var number;
number +=a ;
alert("You have chosen: ' + b);
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="selectForm">
<P>Click the button below:

<P><INPUT TYPE="button" VALUE="Click" onClick="example(1, house’)">
</FORM>

</BODY> Introduction to
</HTML>

JavaScript

Figure 4.1: Using Functions

It adds 1 to number and displays “You have chosen: house”. Of course, if you call the
function like example (5,'palace'), then it adds 5 to number and displays “You have
chosen: palace”. The output of the function depends on the arguments you give it.

Returning a value

One more thing a function can do is to return a value. Suppose we have the following
function:

<HTML>
<HEAD> .
<TITLE>IGNOU </TITLE>
<SCRIPT Language = "JavaScript">
function calculate(a,b,c)
{ ,
d = (atb) * ¢;
return d;
}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT Language = "JavaScript">
var X = calculate(4,5,9);
var y = calculate((x/3),3,5);
aleri(‘calculate(4,5,9) ="' +x +'and ' + ' calculate((x/3),3,5)="+y);
</SCRIPT>
</BODY>
</HTML>

99

Figure 4.2: Using a Function that Returns a Value

Scripting Languages

100

The function shown in Figure 4.8 calculates a number from t

he numbers you pass to it. When it is done it returns the result of the calculation. The
function passes the result back to the function that called it. When the function
executes the return statement, control goes back to the calling program without
executing any more code in the function, if there is any.

The calling of the function is done using the following two statements in the figure:

var x = calculate(4,5,9);
var y = calculate((x/3),3,5);

It means that you have declared a variable x and are telling JavaScript to execute
calculate() with the arguments 4, S and 9 and to put the returned value (81) in x.
Then you declare a variable y and execute calculate() again. The first argument is
x/3, which means 81/3 =27, so y becomes 150.0f course you can also return strings
or even Boolean values (true or false). When using JavaScript in forms, you can write
a function that returns either true or false and thus tells the browser whether to submit
a form or not.

4.5.2 Executing Deferred Scripts

Deferred scripts do not do anything immediately. In order to use deferred commands,
you must call them from outside the deferred script. There are three ways to call
deferred scripts:

¢ From immediate scripts, using the function mechanism
¢ By user-initiated events, using event handlers
¢ By clicking on links or image-map zones that are associated with the script

Calling Deferred Code from a Script

A function is a deferred script because it does not do anything until an event, a ,
function, a JavaScript link, or an immediate script calls it. You have probably noticed
that you can call a function from within a script. Sometimes you are interested in
calling a function from the same script, and in other cases you might want to call it
from another script. Both of these are possible.

Calling a function from the same script is very simple. You just need to specify the
name of the function, as demonstrated in Figure 4.9.

<HTML>

<HEAD>

<TITLE>Calling deferred code from its own script</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<l--

makeLine(30)

function makeLine(lineWidth) {
document.write("<HR SIZE=" + lineWidth + ">")

}

makeLine(10)

I -—=>

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

Introduction to
JavaScript

4.5.3 Objects

A JavaScript object is an instance of datatype. Object is given a unique name and the
collection of properties of the corresponding object may be accessed using the dot
syntax. As a quick introduction to the concept of JavaScript objects, here is the code
that creates an instance of an object called myOb;j:

var myObj = new Object();
myObj.business = "Voice and Data Networking"; myObj.CEO = "IGNOU";
myObj.ticker = "CSCO";

After having run that code (in a scope situation that allowed myObj to be accessed as

required), you could run this...
document.write("My Object ticker symbol is " + myObj.ticker +".");
...and get a complete sentence in your HTML document.

¢ Document Object

The document object is a property of the window object. This object is the container

for all HTML HEAD and BODY objects associated within the HTML tags of an

HTML document

Document Object Properties

Property Description

AlinkColor The color of active links

BgColor The background color of the web page. It is set in the <BODY> tag.
The following code sets the background color to white. ’
document.bgColor = "#FFFFFF"

Cookie Used to identify the value of a cookie

Domain The domain name of the document server

| Embeds An array containing all the plugins in a document
FgColor The text color attribute set in the <body> tag

FileCreatedDate

Use this value to show when the loaded HTML file was created

FileModifiedDate

Use this value to show the last change date of the HTML file
currently loaded

LastModified

The date the file was modified last

Layers An array containing all the layers in a document
LinkColor The color of HTML links in the document. It is specified in the
| <BODY>tag. _
Title T The name of the current document as described between the header
<TITLE> tags.
URL The location of the current document
VlinkColor | The color of visited links as specified in the <BODY> tag

Document Object Methods

Method Description

Clear

This is depreciated

Close

Closes an output stream that was used to create a
document object

Contextual

It can be used to specify style of specific tags. The
following example specified that text in blockquotes is to
be blue:
document.contextual(document.tags.blockquote).color =
"blue";

Multiple styles may be specified in the contextual
method to set the value of text in a <H3> tag that is
underlined to the color blue, for example.
document.contextual(document.tags.H3,
document.tags.U).color = "blue";

101

Scripting Languages

102

| ElementFromPoint(x,y) | Returns the object at point x, y in the HTML document. |
_ GetSelection Get the selected text (if any is selected) o
open([mimeType]) Opens a new document object with the optional mime
type.

Add data to a document. Writes the values passed to the
write function to the document. For example
document.write("<H3>") document.writeln("This is a

\ Header") document.write("</H3>")
writeln(expr1[,expr2...exprN]) | Adds the passed values to the document appended with a
new line character.

write(exprl[,expr2...exprN])

o Predefined Objects

Let us consider some of the most frequently used predefined objects provided in
Javascript.

e Math object

In most applications we need to perform calculations, whether 1t is accounting
software or scientific software. Programmers are often typecast as good
mathematicians. Every mathematician needs a calculator sometimes, or in the case of
JavaScript, the Math object. If we want to calculate "2.5 to the power of 8" or
"Sin0.9" in your script, then JavaScript's virtual calculator is what you need. The
Math object contains a number of manipulating functions:

The Math object

Methods Description
Math.abs(x) Return absolute value of x
Math.acos(x) Return arc cosine of x in radians

Math.asin(x) jReturn arc sine of x in radians

Math.atan(x) \ Return arc tan of x in radians

Math.atan2(x, y) jCounterclockwis@gle between x axis and point (x,v)
| Math.ceil(x) Rounds a number up

{Math.cos(x) Trigonometric cosine of x (x in radians)

Math.exp(x) Exponential method e*

Math. floor(x) Rounds a number down

Math.log(x) Natural logarithm of x (basc €)
Math.max(a, b) Returns the larger of two values
Math.min(a, b) Returns the smaller of two values
Math. pow(x, y) Returns x¥Y

| Math.round(x) Rounds x to the closest integer
Math.sin(x) Trigonometric sine of x (x in radians)

Math.sgrt(x) Square root of X
| Math.tan(x) Trigonometric tangent of x (x in radians)
Properties Description

Math.E Euler’s constant (~ 2.718)

Math.LN10 Natural logarithm of 10 (~ 2.302)

Math.LN2 Natural logarithm of 2 (~ 0.693)

Math.LOG10E Base 10 logarithm of Euler’s constant (~ 0.0434)
Math. LOG2E Base 2 logarithm of Euler’s constant (~1.442)

Math.PI The ratio of a circle’s circumference to its diameter

(~3.141)

| Math.SQRT! 2 Square root of 0.5 (~0.707)
[Math.SQRT2 Square root of 2.0 (~ 1.414)

Let us have Javascript perform some mathematical calculations:

//calculate €3
Math.exp(5)

{/calculate cos(2PI) lmr?lductsion.tc:
Math.cos(2*Math.PI) avascrip
The "with" statement

If you intend to invoke Math multiple times in your script, a good statement to
remember is "with." Using it you can omit the "Math." prefix for any subsequent
Math properties/methods:

with (Math){

var x= sin(3.5)

var y=tan(5)

var result=max(x,y)

}

¢ Date Object

The Date object is used to work with dates and times.

Creating a Date Instance

You should create an instance of the Date object with the "new" keyword. The
following line of code stores the current date in a variable called "my_date":

var my_date=new Date()
After creating an instance of the Date object, you can access all the methods of the

object from the "my_date" variable. If, for example, you want to return the date (from
1-31) of a Date object, you should write the following:

my_date.getDate()

You can also write a date inside the parentheses of the Date() object. The following
line of code shows some of the date formats available.

new Date("Month dd, yyyy hhimm:ss"), new Date("Month dd, yyyy"), new
Date(yy,mrm,dd,hh,mm,ss), new Date(yy,mm,dd), new Date(milliseconds)

Here is how you can create a Date object for each of the ways above:

var my_date=new Date("October 12, 1988 13:14:00"), var my_date=new
Date("October 12, 1988"), var my_date=new Date(88,09,12,13,14,00), var
my_date=new Date(88,09,12), var my_date=new Date(500)

e Some Date Methods

Methods Explanation J
Date() Returns a Date object O
GetDate() Returns the date of a Date object (from |-31)

GetDay() Returns the day of a Date object (from 0-6. 0=Sunday,

1=Monday, etc.)

GetMonth() Returns the month of a Date object (from 0-11. O=January,
1=February, etc.)

GetFullYear() | Returns the year of the Date object (four digits)

GetHours() Returns the hour of the Date object (from 0-23)
GetMinutes() | Returns the minute of the Date object (from 0-59)
GetSeconds() | Returns the second of the Date object (from 0-59)

Examples:
Date

Returns the current date, including date, month, and year. Note that the getMonth
method returns O in January, 1 in February etc. So add 1 to the getMonth method to . 103

Scripting Languages

104

display the correct date.

<HTML>

<BODY>

<SCRIPT LANGUAGE="JAVASCRIPT">
var d = new Date()
document.write("date = ")
document.write(d.getDate())
document.write(".")
document.write(d.getMonth() + 1)
document.write(".")
document.write(d.getFullYear())
document.write("time = ")
document. write(d.getHours())
document.write(".")
document.write(d.getMinutes() + 1)
document.write(".")

document. write(d.getSeconds())
</SCRIPT>

</BODY>

date = 31,8.2003 time = 3,33.17

Figure 4.3: Using the Date Object

Time

Returns the current time for the timezone in hours, minutes, and seconds as shown in
Figure 5.11. To return the time in GMT use getUTCHours, getUTCMinutes etc.

e Array Object

An Array object is used to store a set of values in a single variable name. Each value
is an element of the array and has an associated index number. You can refer to a
particular element in the array by using the name of the array and the index number.
The index number starts at zero.

You create an instance of the Array object with the "new" keyword.

var family names=new Array(5)
The expected number of elements goes inside the parentheses, in this case it 1s 5.

You assign data to each of the elements in the array like this:

family_names[0]="Sharma" family_names[1]="Singh" family_names[2]="Gill"
family names[3]="Kumar" family names[4]="Khan"

The data can be retrieved from any element by using the index of the array element

you want;

Mother=family_names[0] father=family names[1]
The Most Commonly Used Array Methods

Methods Explanation
Length. Returns the number of elements in an array. This property is assigned a value
Iwhen an array is created
reverse() | Returns the array reversed
slice() Returns a specified part of the array
Sort() Returns a sorted array

e History Object

The History object is a predefined JavaScript object which is accessible through the
history property of a window object. The window.history property is an array of URL
strings, which reflect the entries in the History object. The History object consists of
an array of URLS, accessible through the browser's Go menu, which the client has
visited within a window. It is possible to change a window's current URL without an
entry being made in the History object by using the location.replace method. The
History object contains 4 properties and 3 methods as summarized here:

Property Summary for History Object
Current | Specifies the URL of the current history entry.
Next Specifies the URL of the next history entry.
Previous | Specifies the URL of the previous history entry.
Length | Reflects the number of entries in the history list.

Method Summary for History Object
Back() Loads the previous URL in the history list.
Forward() | Loads the next URL in the history list.

1 Go() Loads a URL from the history list.

» Location Object

The Location object is part of a Window object and is accessed through the
window.location property. It contains the complete URL of a given Window object,
or, if none is specified, of the current Window object. Syntax : All of its properties
are strings representing different portions of the URL, which generally takes the
tollowing form:

<:protocol>//<host>[:<port>]/<pathname>[<hash>][<search>]

You can create a Location object by simply assigning a URL to the location property
cf an object:

Syntax: window.location = "file:///C:/Projects"
Property : Description]
Hash The hash property is a string beginning with a hash (#), that specifies an
nchor name in an HTTP URL
Host - The host property is a string comprising the hostname and port strings.
hostname The hostname property specifies the server name, subdomain and domain
mame (or IP address) of a URL. '
Href : The href property is a string specifying the entire URL, and of which all
lother link properties are substrings.
pathname The pathname property is a string portion of a URL specifying haw a
articular resource can be accessed.
Port The port property is a string specifying the communications port that the
lserver uses.
protocol The protocol property is the string at the beginning of a URL, up to and |
Including the first colon (:), which specifies the method of access to the

Introduction to
JavaScript

Scripting Languages

106

Property Description
JURL.
search The search property is a string beginning with a question mark that
lspecifies any query information in an HTTP URL. '

Some Common Methods

Method Description
reload The reload method forces a reload of the windows current document, i.e.
the one contained in the Location.href
Replace The replace method replaces the current history entry with the specified
- URL. After calling the replace method to change the history entry, you
annot navigate back to the previous URL using the browser's Back button.

Check Your Progress 1

I. Write a JavaScript code block using arrays and generate the current date in words.
‘This should include the day, the month and the year.

2. Write JavaScript code that converts the entered text to upper case.

3. Write JavaScript code to validate Username and Password. Username and
Password are stored in variables.

4. Design the following Web page

Current Date & Time : [Mon Mar 3 21:02:03 PST

EDEC I

4.6 MESSAGEBOX IN JAVASCRIPT

In this section, we cover the topic of dialog boxes. This topic is important for
understanding the way parameters are passed between different windows. This
mechanism is a key component of some of the new capabilities of Internet Explorer
5.5 and 6.0, such as print templates. You use dialog boxes all over. The alert box is
probably the most popular one. ’

4.6.1 Dialog Boxes
In this the user cannot switch to the window without closing the current window.

This kind of dialog box is referred to as a modal dialog box. You create a modal
dialog box with showModalDialog().

Syntax: showModalDialog (“Message™)

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JAVASCRIPT">

function fnOpenModal() {
window.showModalDialog("test.htm")

b

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME = IGNOU>

<INPUT TYPE="button" VALUE="Push Me" onclick="{fnOpenModal()">
</BODY>

</HTML>

4.6.2 Alert Boxes

Alert boxes can be utilized for a variety of things, such as to display when an input
field has not been entered properly, to display a message on document open or close,
or to inform someone that they have clicked a link to leave your site. Whatever the
use, the construction is essentially the same.

Syntax : alert(“message”)

The following example will generate a simple alert box based on clicking either a link
or a form button.

<html>

<title>Codeave.com(JavaScript: Alert Box)</title>

<body bgcolor="#{fffff">

<!-- Example of a form button that will open an alert box -->

<form>

<input type="button" value="Open Alert Box"

onClick="alert("Place your message here... \n Click OK to continue.")™>
</form>

<p>

<!-- Example of a link that will open an alert box -->

<a href="javascript:onClick=alert("Place your message here... \n Click OK to
continue.")>

Open Alert Box

</body>
</html>

xamples\figh.

Open Alert Box

Figure 4.4: Using an Alert Box

Introduction to
JavaScript

107

Scripting Languages 4.6.3 Confirm Boxes

The JavaScript confirm alert box differs from a regular alert box in that it provides
two choices to the user, OK and Cancel. Typically, you'll see confirmation boxes
utilized on links where the destination is outside the domain of the page you are
currently on or to alert you of potentially objectionable material. The following
example will display a confirmation alert box when either a link or form button is
clicked. Once either OK or Cancel are selected an alert box will follow to display
which was chosen.

<html>

<body bgcolor="#FFFFFF">

<title>CodeAve.com(JavaScript: Confirm Alert Box)</title>

<script language="JavaScript"> -

<l
function confirm_entry()
{
input_box=confirm("Click OK or Cancel to Contmue")
if (input_box==true)
{
// Output when OK is clicked
alert ("You clicked OK");
) :
else
{
// Output when Cancel is clicked
alert ("You clicked cancel");
}
}
-—>
</script>
Click here
<p>

<form onSubmit="confirm_entry()">
<input type="submit" >

</form>

</body>

</html>

4.6.4 Prompt Boxes

The prompt box allows the user to enter information. The benefits 6f using a prompt
are fairly limited and the use of forms would often be preferred (from a user
perspective). ‘

The prompt box title text cannot be changed and the same applies to button text. You
can have 2 lines of text using \n where the new line starts (please note that the opera
browser up to version 7 will only display 1 line of text)

The text entry field is similar to a form input type="text". The 2 buttons are OK and
Cancel. The value returned is either the text entered or null.

The syntax for the prompt is

prompt("your message",""); (script tags omitted) -
"your message”,"" the ,"" holds the default text value "" = empty.

108

Introduction to
4.7 JAVASCRIPT WITH HTML JavaScript

4.7.1 Events

Events are actions that can be detected by JavaScript. An example would be the
onMouseQOver event, which is detected when the user moves the mouse over an
object. Another event is the onLoad event, which is detected as soon as the page is
finished loading. Usually, events are used in combination with functions, so that the
function is called when the event happens. An example would be a function that
would animate a button. The function simply shifts two images. One image that
shows the button in an "up" position, and another image that shows the button in a
"down." position. If this function is called using an onMouseOver event, it will make
it look as if the button is pressed down when the mouse is moved over the image.

4.7.2 Event Handlers

An event handler executes a segment of a code based on certain events occurring
within the application, such as onLoad or onClick. JavaScript event handlers can be
divided into two parts: interactive event handlers and non-interactive event handlers.
An interactive event handler is the one that depends on user interaction with the form
or the document.

For example, onMouseOver is an interactive event handler because it depends on the
user's action with the mouse. An example of a non-interactive event handler is
onLoad, as it automatically executes JavaScript code without the need for user
interaction. Here are all the event handlers available in JavaScript.

¢ onLoad and onUnload

onLoad and onUnload are mainly used for popups that appear when the user enters or
leaves the page. Another important use is in combination with cookies that should be
set upon arrival or when leaving your pages.

For example, you might have a popup asking the user to enter his name upon his first
arrival to your page. The name is then stored in a cookie. Furthermore, when the
visitor leaves your page a cookie stores the current date. Next time the visitor arrives
at your page, it will have another popup saying something like: "Welcome Ajay, this
page has not been updated since your last visit 8 days ago".

Another common use of the onLoad and onUnload events is in making annoying
pages that immediately open several other windows as soon as you enter the page.

¢ OnFocus and onBlur

The onFocus event handler executes the specified JavaScript code or function on the
occurrence of a focus event. This is when a window, frame or form element is given
the focus. This can be caused by the user clicking on the current window, frame or
form element, by using the TAB key to cycle through the various elements on screen,
or by a call to the window.focus method. Be aware that assigning an alert box to an
object's onFocus event handler will result in recurrent alerts as pressing the '‘OK'
button in the alert box will return focus to the calling element or object.

The onFocus event handler uses the Event object properties.
type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onFocus event handler to replace the
default string displayed in the text box. Note that the first line is HTML code and that 109

Scripting Languages

110

the text box resides on a form called 'myForm'.

Syntax : onfocus = script

<HTML>
<HEAD>

</HEAD>

<BODY>

<FORM NAME = "myform" >

<input type="text" name="myText" value="Give me focus" onFocus =
“changeVal()">

</BODY>

<SCRIPT LANGUAGE="JAVASCRIPT">

s1 = new String(myform.myText.value)

function changeVal() {

s1 ="I'm feeling focused"
document.myform.myText.value = s1.toUpperCase()

}
</SCRIPT>

</HTML>

5

&] C:\Book \uniB\E xamplesfigh el

| |'MFEELING FOCUSED

Figure 4.5: Using the onFocus Method"

onblur = script

The onBlur event handler executes the specified JavaScript code or function on the
occurrence of a blur event. This is when a window, frame or form element loses
focus. This can be caused by the user clicking outside of the current window, frame
or form element, by using the TAB key to ¢ycle through the various elements on
screen, or by a call to the window.blur method.

The onBlur event handler uses the Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The following example shows the use of the onBlur event handler to ask the user to
check that the details given are correct. Note that the first line is HTML code.

<HTML>

<HEAD>

</HEAD>

<BODY>

<FORM NAME = "myform" >

Enter email address <INPUT TYPE="text" VALUE="" NAME="userEmail"
onBlur=addCheck()>

</BODY>

<SCRIPT LANGUAGE="JAVASCRIPT">

function addCheck() {

alert("Please check your email details are correct before submitting")
}

</SCRIPT>

</HTML>

¢ OnError

The onError event handler executes the specified JavaScript code or function on the
occurrence of an error event: This happens when an image or document causes an
error during loading. A distinction must be made between a browser error, when the
user types in a non-existent URL, for example, and a JavaScript runtime or syntax
error. This event handler will only be triggered by a JavaScript error, not a browser
error,

Apart from the onError handler triggering a JavaScript function, it can also be set to

onError="null", which suppresses the standard JavaScript error dialog boxes. To

suppress JavaScript error dialogs when calling a function using onError, the function
- must return true (Example 2 below demonstrates this).

There are two things to bear in mind when using window.onerror. First, this only
applies to the window containing window.onerror, not any others, and secondly,
window.onerror must be spelt all lower-case and contained within <script> tags; it
cannot be defined in HTML (this obviously does not apply when using onError with
an image tag, as in example 1 below).

The onFocus event handler uses the Event object properties.

type - this property indicates the type of event.
target - this property indicates the object to which the event was originally sent.

The first example suppresses the normal JavaScript error dialogs if a problem arises
when trying to load the specified image, while Example 2 does the same, but applied
to a window, by using a return value of true in the called function, and displays a
customized message instead.

Syntax : Object.onError = [function name]

Example 1

Example 2

<script type="text/javascript" language="JavaScript">
sl = new String(myForm.myText.value)

Introduction to
JavaScript

Scripting Languages

112

window.onerror=myErrorHandler
function myErrorHandler() {
alert('A customized error message')
return true

}

</script>

<body onload=nonexistantFunc()>

Check Your Progress 2

Design a Web page that displays a welcome message whenever the page 15 loaded ang
an Exit message whenever the page 1s unloaded.

4.8 FORMS

Each form in a document creates a form object. Since a document can contain more
than one form, Form objects are stored in an array called forms.

4.8.1 Forms Array

Using the forms[] array we access each Form object in turn and show the value of its
name property in a message box. Let us have a look at an example that uses the forms
array. Here we have a page with three forms on it.

<HTML>
<HEAD>
<SCRIPT LANGUAGE=JavaScript>
function window_onload()
{
var numberForms = document.forms.length;
var formindex;
for (formIndex = 0; formIndex < numberForms; formIndex++)
{ -
alert(document.forms[formindex].name);
}

}
</SCRIPT>

</HEAD>
<BODY LANGUAGE=JavaScript onLoad="window_onload()">
<FORM NAME="form1">
<P>This is inside form 1</P>
</FORM>
<FORM NAME="form2">
<P>This is inside form2</P>
</FORM>
<FORM NAME-="form3">
<P>This is inside form3</P>
</FORM>
</BODY>

-

. </HTML>

Within the body of the page we define three forms. Each form is given a name, and
contains a paragraph of text. Within the definition of the <BODY> tag, the
window_onload() function is connected to the window object's onl.oad event
handler. '

<BODY LANGUAGE-=JavaScript onLoad="return

Introduction to

window_onload()">
- JavaScript

This means that when the page is loaded, our window_onload() function will be
called. The window_onload() function is defined in a script block in the HEAD of
the page. Within this function we loop through the forms|] array. Just like any other
JavaScript array, the forms[] array has a length property, which we can use to
determine how many times we need to loop. Actually, as we know how many forms
there are, we could just write the number in. However, here we are also
demonstrating the length property, since it is then easier to add to the array without
having to change the function. Generalizing your code like this is a good practice to
tollow.

The function starts by getting the number of Form objects within the forms array and
stores it in the variable numberForms.

function window_onload()

{

var numberForms = document.forms.length;
Next we define a variable, formIndex, to be used in our for loop. After this comes the
for loop itself.

var formIndex;
for (formindex = 0; formIndex < numberForms; formIndex++)

{
}

alert(document. forms[formIndex].name);

Remember that since the indices for afrays start at zero, our loop needs to go from an
index of 0 to an index of numberForms - 1. We do this by initializing the formIndex
variable to zero, and setting the condition of the for loop to formIndex <
numberForms.

Within the for loop's code, we pass the index of the desired form (that is, formIndex)
to document.forms{ |, which gives us the Form object at that array index in the forms
array. To access the Form object's name property, we put a dot at the end and the
name of the property, name.

¢ Form Object

Form is a property of the document object. This corresponds to an HTML input form
constructed with the FORM tag. A form can be submitted by calling the JavaScript
submit method or clicking the form SUBMIT button. Some of the form properties are:

¢ Action - This specifies the URL and CGI script file name the form is to be
submitted to. It allows reading or changing the ACTION attribute of the HTML
FORM tag. ,

Button — An object representing a GUI control.

e Elements - An array of fields and elements in the form.

s Encoding - This is a read or write string. It specifies the encoding method the form
data is encoded in, before being submitted to the server. It corresponds to the
ENCTYPE attribute of the FORM tag. The default is "application/x-www-form-
urlencoded". Other encoding includes text/plain or multipart/form- data.

e Length - The number of fields in the elements array, that is, the length of the
elements array.

Method - This is a read or write strmg It has the value "GET" or "POST".
e Name - The form name. Corresponds to the FORM Name attnibute. 113

Seripting Languages

114

Password — An object representing a password field.

Radio — An object representing a radio button field.

Reset - An object representing a reset button.

Select - An object representing a selection list.

Submit - An object representing a submit button.

Target - The name of the frame or window to which the form submission response
is sent by the server.

Corresponds to the FORM TARGET attrlbute

Text - An object representing a text field.

e Textarea - An object representing a text area field.

Some of the Form Element Properties are:

s Name - It provides access to an element’s name attribute. It applies to all form
elements.

o Type - Identifies the object’s type. It apphes to all form elements

¢ Value - Identifies the object’s value. It applies to all, button, checkbox, hldden
password, radio, reset, submit, text or textarea.

e Checked - Idenuﬁes whether the element is checked. It applies to checkbox and
radio.

o Default checked - Identifies whether the element is checked by default It applies
to checkbox and radio.

o Default value - Identifies the object s default value. It applies to password, submit
and textarea.
Length - Identifies the length of a select list. It applies to select.

e Options — An array that identifies the optnons supported by the select list. It
applies to select.

Syntak : <FORM Name = f‘myforh’; Action = “mailto:subscribe@abc.com” Method
= POST Enctype = “multipart/form-data” onsubmit = “return check()” >

<HTML>
<HEAD>

<SCRIPT LANGUAGE = “javascript™>
function check () - : :
{ if (document.myform.email.value == *”) {
alert(“please enter your email-id”),
return false; }
o} '
</SCRIPT>
</HEAD>-
<BODY>
Enter your Email to subscribe : <p>
<FORM Name = “myform” Action = “mailto:subscribe@abc.com” Method = POST
Enctype = “multipart/form—déta" onsubmit = “return check()” >
<Input type = “text” Name = “email’™>
<Input type = “submit” value = “submit”>
</FORM>
</BODY>
</HTML>

The above code is used for obtaining the user’s email-id. In case the user clicks the
submit button without entering the email-id in the desired text field, he sees a
message box indicating that the email-id has not been entered.

Intreduction to
Case Study JavaSeript
Design a Web page with appropriate functionality to accept an order for a fast food
cutlet. It should check if the user has entered a valid name and email-id. It should also

calculate the value of the order.

<HTML>
<HEAD>

<TITLE>Donald Duck</TITLE>
<SCRIPT Language="JavaScript">
var m;
function chk_name()

{

if(document.forml.txt_name.value == "")
{

. aleit("Please enter your name");
document.form1.txt_name.focus();

} -

!

function chk_email()

{

var str = document.form1.txt_email.value ;
var i,

if (document.forml.txt_email.value == "")
{

alert("Please enter your Email-ID");
document.forml.txt_email.focus();

)
i = str.indexOf("@");
if (i<0)
{
alert ("Please enter a valid Email-1d");
H
}
function mainitem(F1)
{ var z=" n; .
for(j=0;j<3,j++)
{
for(i=0;i<F].elements[j].length;i++)
{
if (F1.elements(j][i].selected)
var y=F1.elements[j].options{i].value;
z=z+"\n"+y;
Fl.elements[3].value=z;
H
}
}
m=z,
}
function cal(F1)
{ var d=0;
for(j=0;j<3;j++)
{

for(i=0;i<F 1.clements(j].length;i++)

{ .
if (F1.elements[j}[i].selected) 115

Scripting Languages

116

{
var y=F1.elements[j].options[i].value;
s=new String(y);
var a=s.indexOf(">");
var b=s.substring(a+1,a+3);
c=parselnt(b);
d=d+c;
}

p="Total cost of the selected items="+d;
m=m+"\n"+p;
Fl.elements[3].value=m;

}

function ¢lr(F1)

{

Fl.elements[3].value="";

}

</SCRIPT>

</HEAD>

<BODY>

<h2><center> Welcome to the World renowned online Fast Food
Center

 Donald Duck ! </center></h2>

<Form name="form!" ACTION = "mailto:dlc@ignou.ac.in" METHOD = POST>
Select the Menu Items of your choice and then click on the Total Cost to find the bill
amount-

<Table >

<TR valign=top ><td>

Major dishes :

<select name="s1" MULTIPLE onBlur="mainitem(this.form)">
<option value="Onion cheese capsicum Pizza->300" selected> Onion cheese
capsicum Pizza

<option value="Onion mushroom Pizza->200"> Onion mushroom Pizza
<option value="Chicken Tikka Pizza->460"> Chicken Tikka Pizza
<option value="Cheese Pizza->150"> Cheese Pizza

</select>

</td>

<td> </td><td> </td>

<td>

Soups :

<select name="s2" MULTIPLE onBlur="mainitem(this.form)">
<option value="Tomato Soup->70"> Tomato Soup

<option value="Sweet corn Soup->80">Sweet corn Soup

<option value="Sweet n Sour soup->90">Sweet n Sour soup
<option value="Mixed veg soup->50">Mixed veg soup

</select> o

</td>

<td> </td><td> </td>

<td>

Miscellaneous :

<select name="s3" onBlur="mainitem(this.form)">

<option value=" ">'Desserts'

<option value="Milkshakes->35">Milkshakes

<option value="Soft drinks->20">Soft drinks

<option value="Ice cream sodas->25">Softy

</select>

</td>

<td> </td><td> </td>

</TR>

</Table>

<Table>

<TR valign=top><td>

The items selected form the Menu are :

<TEXTAREA Name="TA1" Rows=10 Cols=50>
</TEXTAREA>

</td>

<td> </td><td> </td>

<td>

<input type="button" Value="Total Cost" onClick="cal(this.form)">
<input type="button" Value="Clear" onClick="clr(this.form)">
</td>

</TR>

</Table>

<HR noshade>

<h2> Personal Details </center></h2>
<Table >

<TR valign=top ><td>

Name:

<Input Type = "Text" Name = "txt_name" Onblur = "chk_name()">

</td>

<td> </td><td> </td>

<td>

Contact Address :

<TEXTAREA Name="TA2" Rows=3 Cols=10>
</TEXTAREA>

</td>

<td> </td><td> </td>

<td>

Email :

<Input Type = "Text" Name = "txt_email" Onblur = "chk_email()">

»</td>

<td> </td><td> </td>

</TR>

</Table>

<Table>

<TR valign=top ><td>

Phone :

<Input Type = "Text" Name = "txt_phone">

</td>

<td> </td><td> </td>

<td>

<Input Type = "submit” Name = "btnsubmit" Value =" Submit.

</td>
<td> </td><td> </td>
</TR>

</Table>

</Form>

</BODY>
</HTML>

ll>

Introduction to
JavaScript

117

Seripting Languages { heck Your Progress 3

1. Design the folit

Sdit Wiew Favonier

oy o1 I
Thent &ddress. ;
r

T b - {
Chent Bomnad Address | |
e e~)
" Male © Female :
i

SetElement firay Value

b

e e e — e e e g e e T
7 Done E":.,,; My Computer ;
i

118

3. Design the following Web page in such a way that selecting any option Intreduction to

from the radiv button displays the appropriate resull in the Result box. JavaSeript
Working with Radm Bumms m::msoﬂ intemet Ea:plorer PR
Fic :_alt View T svoiiles Touls : o il
N - \5] L.);’
Rach, ‘ B Ashi S : ’ Hlstoly : Mail :
derew 4’37 ’f.‘"boolx\urnlS\Examplw “igh. html __J " Go ' ILinks »,
Value: {0
Action:
" Double
" Sguare
Result: | —
hd
FETE i ot .
4 Suppose you have an order form that updates automatically each time you

enter or change a quantity, the cost for that item and the total cost are updated. Each
field must be vahdated. Design the following web page. (Case Study)

7R Urder § orm Micigsoft iotewnel F aplore

_ C \Book\um(S\E xamples\caseS_2. htm!

Online Cake Order Form

Nume: [Phone: I E-mail address: |
Shipping Address:
Enter your shipping address here. =]

:J Praducts to Order:
Qry: IU Cost: (R9.240) Vanilla cake
Qty: IU Cost: l (Rs.270) Strawberry cake
Qty: l Cost: i (Rs.300) Black Forest cake
l Cost: l (Rs3.600) Chocolate cake

'Intal Cn:t [

Method of P-y]nent rCheck or Money Ord.r =]
Credit Card or Check Numbor::
' SendYour Ordar. | i Gl

BT BT T

49 SUMMARY

In this unit we have learned about the major features of JavaScript. Besides normal
programming constructs, datatypes and variables, we have also discussed the most
commonly used objects. These are: Document, Math, Date, History, Location etc. The
Submit and Reset objects are used to submit the information to the server and reset
the information entered, respectively. Finally, we discussed a very important object,
the Form object.

119

Scripting Languages -

4.10 SOLUTIONS/ ANSWERS

Check Your Progress 1
1.

<HTML>

<HEAD>

<TITLE> Date validations </TITLE>

<SCRIPT>
var monthNames = new Array(12);
monthNames[0]= "January";
monthNames[1]= "February";
monthNames[2]= "March";
monthNames[3]= "April";
monthNames[4]= "May",;
monthNames[5]= "June";
monthNames[6]= "July";
monthNames[7]= "August";
monthNames[8]= "September";
monthNames[9]= "October"”;
monthNames[10]= "November";
monthNames[11]= "December";

var dayNames = new Array(7);
dayNames[0]= "Sunday";
dayNames[1]= "Monday";
dayNames[2]= "Tuesday"; ,
dayNames[3]= "Wednesday";
dayNames[4]= "Thursday";
dayNames[5]= "Friday";
dayNames[6]= "Saturday";

function customDateString (m_date)

{
t

var daywords = dayNames[m_date.getDay()];

var theday = m_date.getDate();

var themonth = monthNames[m_date.getMonth()];

var theyear = m_date.getYear();

return daywords + ", " + themonth + " " + theday + ", " + theyear;
} .
</SCRIPT>
</HEAD>

<BODY>
<H1>WELCOME!</H1>
<SCRIPT> _
document. write(customDateString(new Date()))
</SCRIPT> :
</BODY>
</HTML>

2.
<HTML>

<HEAD>
120 <SCRIPT language="JavaScript">

function checkData(column_data)

{
if (column: data !="" && column_data.value !=
column_data.value.toUpperCase())
{
column_data.value = column_data.value.toUpperCase()
H
</SCRIPT>
</HEAD>
<BODY>
<FORM>

<INPUT TYPE="text" NAME="collector" SIZE=10
onChange="checkData(this)">

<INPUT TYPE="text" NAME="dummy" SIZE=10>
</FORM>
</BODY>
</HTML>

3.

<HTML>

<HEAD>

<TITLE>Password Validation</TITLE>
<SCRIPT language="JavaScript">

<)

var userpassword = new Array(4);
userpassword[0]= "Ajay";
userpassword[1]= "ajay";
userpassword[2]= "Rohan";
userpassword[3]= "rohan";

function checkOut()
| ,
var flag =0;
~ var flagl =0;
var 1 =0,
var j =0;

for (x=0; x<document.survey.elements.length; x++)
f
1 .
if (document.survey.elementsix].value == "")
{
alert("You forgot one of the required fields. Please try again")
return;
H
!

var user= document.survey.elements[0].value
var password = document.survey.elements[1].value
while(i<=3) :

if(userpassword{i] == user)
{
=i
i+
if(userpassword[j] == password)

Introduction to
JavsScript

Scripting Languages

122

flag=1;
break;

1
)

1+=2;
!
if{flag == 0)
{
alert("Please enter a valid user name and password")
return;
}

else

{

alert("Welcome !"\n" +document.forms[0].Username.value);

}

return;

!

[[~->

</SCRIPT>

</HEAD>

<BODY>

<FORM ACTION="" method="POST" NAME="survey"

onSubmit="return checkQut(this.form)">

<INPUT TYPE="TEXT" NAME="Username" SIZE="15" MAXLENGTH="15">
User Name ' :

<INPUT TYPE="PASSWORD" NAME="Pasword" SIZE="15">Password

<INPUT TYPE="SUBMIT" VALUE="Submit"><INPUT TYPE="RESET"
V ALUE="S8tart Over">

</FORM>

</BODY>

</HTML>

4.

<HTML>

<HEAD>

<TITLE>Displaying the Date and time in the Browser</TITLE>

</HEAD>

<BODY> .

<SCRIPT LANGUAGE="JavaScript">

function begin(form)
{
form_name = form; .
time_out=window .setTimeout("display_date()",500)
}

function display_date()
{
form_name.date.value=new Date(),
time_out=window.setTimeout("display_date()",1000)
}
function display_clock()
{ .
document. write('<FORM
NAME=time_form><CENTER>

Current Date & Time ')

document.write(' <INPUT NAME=date size=19
value=""</FORM></CENTER>")
begin(document.time_form)

}
display_clock()
</SCRIPT>
</BODY>
</HTML>

Check Your Progress 2
1.

<HTML>
<HEAD>
<TITLE>Creating and Using User Defined Functions</TITLE>
<SCRIPT LANGUAGE="JavaScript">

var name = "";

function hello()

(,
name = prompt('Enter Your Name:','Name');
alert('Greetings ' + name + ', Welcome to my page!");

function goodbye()
{
alert('Goodbye ' + name + ', Sorry to see you go!");
}
</SCRIPT>
</HEAD>
<BODY onLoad="hello();" onUnload="goodbye();">

</BODY>
</HTML>

Check Your Progress 3
1.

<HTML>
<HEAD>
<TITLE>FORMS</TITLE> .
<!-- This code allows to access the Form objects Elements Array //-->
<SCRIPT Language="JavaScript">

function Ver(form1)

!
(

v=form].elements.length;
if (form1.elements{3].name=="Button1")

{

alert('First form name : +document.forms[0].name); ;
alert('No. of Form elements of ' +document.forms[0].name +' = '+v),

Introduction to
JavaScript

123

Scripting Languages }
k else if (form1.elements[4].name=="Button2")

{
alert('Second form name : +document.forms| 1].name);
alert('No. of Form elements of ' +document.forms[1].name +'="+tv);
}
for(i=0;i<v;i++)
alert(form1.elements[i].name+ ' is at position +1);

H

</SCRIPT>
</HEAD>

<BODY>
<FORM Name="Survey Form 1">
FIRST FORM: <i>Survey Form [</i>

First Name : <Input Type=Text Name="Textl" Value="">

<Input Type="radio" Name="Radial" Value=""> Fresher

<Input Type="radio" Name="Radiol" Value="">
Experienced

<Input Type="Button" Name="Buttonl" Value="Clickl"
onClick="Ver(form)">

</FORM>

<FORM Name="Survey Form 2">
SECOND FORM: <i> Survey Form 2 </i>

Name : <Input Type="Text" Name="Text2" Value="">

Password ; <Input Type="Password" Name="Pass2" Value="">

<Input Type="CheckBox" Name="Check!" Value="" > Employed
<Input Type="CheckBox" Name="Check2" Value="" > Studying -

<Input Type="Button" Name="Button2" Value="Click2"
onClick="Ver(form)">
</FORM>
</BODY>
</HTML>

<HMTL>
<HEAD>
<TITLE>FORMS</TITLE>

<!-- This code checks the Checkbox when the button is clicked //-->
<SCRIPT Language="JavaScript">
function Chk(f1)
{
f1.Check.checked=true;
alert(" The Checkbox just got checked ");

f1.Check.checked=false;
124

Introduction to

f1.Radio[1].checked=false;

alert(" The Radio button just got checked ");
'

</SCRIPT>
</HEAD>

f1.Radio[0].checked=true;
‘ JavaSeript ’

<BODY>

<FORM>
Client Name : <Input Type=Text Name="Text" Value="">

Client Address: <Input Type=Text Name="Textl" Value="">

Client E-mail Address :<Input Type=Text Name="Text2"
Value="">

<Input Type="radio" Name="Radio" Value=""> Male
<Input Type="radio" Name="Radio" Value=""> Female

<Input Type="CheckBox" Name="Check" Value=""> Employed

<Input Type="Button" Name="Bt" Value="Set Element Array Value"
onClick="Chk(this.form)">
</FORM>
</BODY>
</HTML>

<HTML>

<HEAD>

<TITLE> Working with Radio Buttons </TITLE>
<SCRIPT LANGUAGE="JavaScript">

function calculate({form)

{

if(form.elements[2].checked)

{

form.result.value = form.entry.value * form.entry.value;

else

form.result.value = form.entry.value * 2;

}
</SCRIPT>

</HEAD>

<BODY>

<FORM >

<CENTER>

<B:>Value:

<INPUT TYPE="text"” NAME="entry" VALUE=0>

<SPACER Size= 190>

Action:

125

l

f

Scripting Languages

126

<SPACER Size = 225>

<INPUT TYPE="radio" NAME="action1" VALUE="twice"
onClick="calculate(this.form);">Double

<SPACER Size = 225>

<INPUT TYPE="radio" NAME="actionl" VALUE="square"

onClick="calculate(this.form);">Square

Result:

<INPUT TYPE=text NAME="result" onFocus = "this.blur();">

</CENTER>

</FORM>

</BODY>

</HTML>

4. (Case Study)

<HTML>

<HEAD><TITLE>Order Form</TITLE>
<SCRIPT> '

// function to calculate the total cost field

function Total()

{ var tot =0,

tot += (240 * document.order.qtyl.value);

tot += (270 * document.order.qty2.value);

tot += (300 * document.order.qty3.value);

tot += (600 * document.order.qty4.value),
document.order.totalcost.value = tot; }

// function to update cost when quantity is changed
function UpdateCost(number, unitcost)

{ costname = "cost" + number; qtyname = "qty" + number;
var q = document.order[qtyname].value;
document.order[costname).value = q * unitcost;
Total(); '

}

/I function to copy billing address to shipping address
function CopyAddress()

{ if (document.order.same.checked)

{ document.order.shipto.value = document.order.billto.value;

}

-}

//global variable for error flag

var errfound = false;

//function to validate by length
function ValidLength(item, len)

{ return (item.length >= len); }

{/function to validate an email address
function ValidEmail(item)

$if ('ValidLength(item, S)) return false;
if (item.indexOf (@', 0) == -1)

return false;

return true;

}

// display an error alert
function error(elem, text)
{ :

// abort if we already found an error

if (errfound) return;

window.alert(text);

elem.select();

elem.focus();

errfound = true;

}

// main validation function

function Validate()

{

errfound = false;

if (!ValidLength(document.order.name1.value,6))
error(document.order.name!,"Invalid Name");

if !ValidLength(document.order.phone.vaiue,10))

' error(document.order.phone,"Invalid Phone");

if (!ValidLength(document.order.billto.value,30))
error(document.order.billto,"Invalid Billing Address");

if (!VatidLength(document.order shipto.value,30))
error(document.order.shipto,"Invalid Shipping Address");

if ("ValidEmail(document.order.email.value))
error(document.order.email, "Invalid Email Address");

if (document.order.totalcost.value =="")
error(document.order.qtyl, "Please Order at least one item.");
if (document.order.payby.selectedIndex != 1)

{

if (! ValidLength(document.order.creditno.value,2))
error(document order.creditno," Invalid Credit/Check number");
} ,

return !errfound; /* true if there are no errors */ }
</SCRIPT> </HEAD>

<BODY> '

Introduction to
JavaSeript

127

Scripting Languages

128

<H1>Online Cake Order Form</H1>

<FORM NAME="order" onSubmit="return Validate();">
Name:

<INPUT TYPE="text" NAME="namel" SIZE=20>
Phone:

<INPUT TYPE="text" NAME="phone" SIZE=15>
E-mail address:

<INPUT TYPE="text" NAME="email" SIZE=20>

Shipping Address:

<TEXTAREA NAME="shipto" COLS=40 ROWS=4 onChange="CopyAddress();">
Enter your shipping address here. </TEXTAREA>
Products to Order:

Qty: <INPUT TYPE="TEXT" NAME="qtyl" VALUE="0" SIZE=4 onChange =
"UpdateCost(1, 240);">

Cost: <INPUT TYPE="TEXT" NAME="cost]" SIZE=6> (Rs.240) Vanilla cake

Qty: <INPUT TYPE="TEXT" NAME="qty2" VALUE="0" SIZE=4 onChange =
"UpdateCost(2, 270);,">

Cost: <INPUT TYPE="TEXT" NAME="cost2" SIZE=6> (Rs.270) Strawberry cake

 '

Qty: <INPUT TYPE="TEXT" NAME="gty3" VALUE="0" SIZE=4 onChange =
"UpdateCost(3, 300);">

Cost: <INPUT TYPE="TEXT" NAME="cost3" SIZE=6> (Rs.300) Black Forest
cake

-Qty: <INPUT TYPE="TEXT" NAME="qty4" VALUE="0" SIZE=4 onChange =

"UpdateCost(4, 600);">
Cost: <INPUT TYPE="TEXT" NAME="cost4" SIZE=6> (Rs.600) Chocolate cake

<HR> Total Cost: <INPUT TYPE="TEXT" NAME="totalcost"
SIZE=8><HR>

Method of Payment:

<SELECT NAME="payby"> <OPTION VALUE="check" SELECTED>
Check or Money Order

<OPTION VALUE="cash">Cash or Cashier's Check

<OPTION VALUE="credit">Credit Card (specify number)

. </SELECT>
 Credit Card or Check Number::

<INPUT TYPE="TEXT" NAME="creditno" SIZE="20">

<INPUT TYPE="SUBMIT" NAME="submit" VALUE="Send Your Order">
<INPUT TYPE="RESET" VALUE="Clear Form"> _

</FORM>

</BODY>

</HTML>

Introduction to

4.11 FURTHER READINGS ' JavaSeript

1.

JavaScript Programmers Reference, Cliff Wootton. Publisher: Wrox Press Inc.
Year 1999.

. Beginning JavaScript, Paul Wilton. Publisher: Wrox Press In¢. 1st Edition

. JavaScript: The Definitive Guide, David Flanagan. Publisher: O'Reilly. 4th Edition

2001.

The JavaScript Bible, Danny Goodman. Publisher: John Wiley & Sons Inc.
Edition 2001.

129

