

 59

A Case Study

UNIT 4 A CASE STUDY

Structure Page Nos.

4.0 Introduction 59

4.1 Objectives 59
4.2 Designing a Transaction-processing System 60

4.3 Summary 74

4.4 Further Readings 74

4.0 INTRODUCTION

In the units covered so far, we have discussed various features of C++ language that

help in designing and implementing useful programs to solve various real world

problems. The bottom up approach adopted by C++ language provides a better way to

capture the details of real world problems and design efficient and adaptable solutions.
Whether it is the mechanism of constructors and destructors, inheritance, or

polymorphism; all taken collectively provide suitable design methodology and tool for

solving various real world problems through C++ programming formulations. In order
to solve a real world problem, the first and foremost requirement is to identify the

various objects in the system along with their general attributes. This is then followed

by the more involved process of identifying the methods/ functions that can be applied
on the different objects. Once this is done, the effort gets more focused towards

design, which involves designing various classes and implementing different

functions.

This unit presents a case study of designing and implementing a transaction-

processing system for banking domain. Unlike a database design for bank accounts,

we have adopted a file processing approach to emphasize the C++ features and
capabilities. The design involves creating necessary data files to store accounts and

customer information and then accessing them through suitable code for writing data,

appending data, performing credit operations and displaying the results. Our focus in

the case study is on demonstrating the design methodology and the steps required to
design a small real world application. The steps involved in design and

implementation of the transaction-processing system are described with relevant

explanations at various places. The program design also makes use of certain features
of C++ which are used for larger programs. After a careful study of the unit, you

would be able to clearly identify the broad guidelines and general steps involved in

solving a real world problem and using C++ for solving variety of problems.

4.1 OBJECTIVES

At the end of the unit, you should be able to:

 explain the steps involved in solving real world problems;

 describe the overall framework of such designs;

 appreciate the usefulness of various features of C++ for solving different real

problems;

 design C++ programming solutions for many other problems; and

 design C++ programs involving multiple files.

60

Advanced Features of C ++
4.2 DESIGNING A TRANSACTION-PROCESSING

SYSTEM

A transaction processing system is one where certain activities are carried out as part
of some bigger goal. The kind of transactions performed in a system depends on the

domain of the problem. For example, in a ticket reservation domain the key

transactions may be booking a ticket, realizing payment for a ticket, cancelling a
ticket, modifying or amending a ticket, refund of a cancelled ticket etc. Similarly in a

banking domain, the transactions could be opening a customer account, updating the

account records, processing withdrawal from an account, deposit into an account,
printing summary of accounts etc. Every transaction processing system, irrespective

of the domain, has to complete certain activities (referred to as transactions).

Nowadays when a large number of transaction processing activities are automated to

be performed on a computer system, it is very important to know and understand how
can we design such a system. Moreover, with the increased use of Internet and web-

based services many of these transactions are initiated and realized at different

physical machines. The data related to transactions is sent over communication lines.
One common thing however in all kind of transaction processing systems is the need

to store and manipulate associated data. The data of the system may be stored either in

a database format or in terms of a collection of various files. The general practice in
most of the real world transaction processing systems is to go for a database design

approach. However, in the example described below we have used a file processing

approach.

Most of the transaction processing systems are quite big and result into large

programs. The large programs often comprise of various modules. In order to have

better understanding and design convenience, these transaction processing systems are
designed as a collection of multiple programs. In the previous units we have largely

seen example programs consisting of a single program file. Whenever we have to

design programming solution for a larger problem, it is often required to organize the

large code into multiple files. Using a multiple file organization not only helps in
clarity of the design but also in appropriate use of class libraries and better

coordination of programmers working on the large project. In fact, large programs are

usually divided into separate files, where different files have code for different
functionalities, such as one file for mathematical analysis, another for graphics display

and a separate one for I/O etc. Large applications sometimes also involve multiple

designers who coordinate their effort to design the final solution. Most of the C++
IDEs provide a feature called PROJECT which helps in designing and organizing

larger programs comprising multiple files.

We will now see how we can use the various features and capabilities of C++ that we
have learned so far to design a transaction-processing system. The proposed system

involves some fixed-length account records for a company having certain number of

customers. Each record consists of an account number that acts as the record key, a
last name, a first name and a balance. The transaction-processing program is to be

designed in such a manner that it can provide overall management functions for the

accounts and transactions. It should be able to perform functions like update an
account, insert a new account, delete an account and insert all the account records into

a formatted text file for printing.

The key components in this application design can be understood through following
abstract diagram representation.

 61

A Case Study

 Figure 4.1 : Abstract Diagram of transaction processing system

As we can see, the entire data corresponding to accounts and customer information is

stored in credit.dat file. We will design program to enter, add and update the data in
this file. The data entered may also be retrieved and displayed as a formatted text

output through the use of various stream manipulators. We first create a ClientData

class header file that defines the format of the data and then define the constructor and
certain basic methods. The following two program segments (Program 4.1 and 4.2)

are written for this purpose.

 1 #ifndef CLIENTDATA_H

 2 #define CLIENTDATA_H

 3 #include <string>

 4 using namespace std;

 5 class ClientData

 6 {

 7 public:

 8 ClientData(int =0, string = “ “, string = “ “, double =

0.0);

 9

10 void setAccountNumber (int);

11 int getAccountNumber() const;

12 void setLastname(string);

13 string getLastName() const;

14 void setFirstName(string);

15 string getFirstName() const;

16 void setBalance(double);

17 double getBalance() const;

18

19 private:

20 int accountNumber;

21 char lastName[15];

22 char firstName[10];

23 double balance;

24 };

25 #endif

Program 4.1: ClientData class header file

The program 4.1 above defines client data header file which specifies the data format
to be used in the application. The main data items are account number (an integer

Accounts and Customer related

information stored in credit.dat

file

Entering
data and

updating

records

Retrieving

data from the

file and
displaying

results

62

Advanced Features of C ++ value), last name of customer (a string), first name of customer (a string) and balance

(a float value denoting the account balance). These data items are declared as private.

The methods to access and modify this data are setAccountNumber(),

getAccountNumber(), setLastName(), getLastName(), setFirstName(),
getFirstName(), setBalance() and getBalance(). All these functions are used to define

and retrieve values for various fields, and are defined in next program (Program 4.2).

The client data represent a customer’s credit information and the methods described in
program 4.2 provide the code for manipulating the data. The exact code is described

in in the program 4.2 given below:

 1 #include <string>

 2 #include “ClientData.h”

 3 using namespace std;

 4

 5 // default ClientData constructor

 6 ClientData::ClientData(int accountNumberValue, string

lastNameValue,

 7 string firstNameValue, double balanceValue)

 8 {

 9 setAccountNumber(accountNumberValue);

10 setLastName(lastNameValue);

11 setFirstName(firstNameValue);

12 setBalance(balanceValue);

13 } // end ClientData constructor

14 //get account number value

15 int ClientData::getAccountNumber() const

16 {

17 return accountNumber;

18 }

19 //set account number value

20 void ClientData::setAccountNumber(int accountNumberValue)

21 {

22 accountNumber=accountNumberValue;

23 }

24 // get last name value

25 string ClientData::getLastName() const

26 {

27 return lastName;

28 }

29 // set last name value

30 void ClientData::setLastName(string lastnameString)

31 {

32 int length=lastNameString.size();

33 length = (length<15? length:14); \\for copying at most 15

chars

34 lastNameString.copy(lastName, length);

35 lastName[length]=’\0’; \\appending null character

36 }

37

38 //get first-name value

39 string ClientData::getfirstName() const

40 {

41 return firstName;

42 }

43

44 // set first-name value

45 void ClientData::setfirstName(string firstNameString)

46 {

47 // copy at most 10 chars

48 int length =firstNameString.size();

49 length = (length < 10? length:9);

 63

A Case Study
50 firstNameString.copy(firstName, length);

51 firstName[length]=’\0’; \\ appending null char

52 }

53

54 // get balance value

55 double ClientData::getBalance() const

56 {

57 return balance;

58 }

59

60 //set balance value

61 void ClientData::setBalance(double lalanceValue)

62 {

63 balance=balanceValue;

64 }

65

Program 4.2: ClientData class representing customer credit information

As you may easily notice, the program defines the ClientData constructor comprising

of various functions, each of which have a specified code. The functions

setLastName() and setFirstName() limit the number of characters read from input that

are finally written to actual data.

We now look at the code (Program 4.3) for creating a file credit.dat with some data

entries to be used in our transaction processing system. The program creates a binary
file credit.dat for output. It then writes 100 blank records into the credit.dat data file.

The next program (program 4.4) then uses various functions to actually write data into

this file.

 1 // creating randomly accessible file credit.dat

 2 #include <iostream>

 3 #include <fstream>

 4 #include <cstdlib>

 5 #include “ClientData.h”

 6 using namespace std;

 7

 8 int main()

 9 {

10 ofstream outCredit (“credit.dat”, ios::out | ios::binary);

11 if (!outCredit)

12 {

13 cerr << “File could not be opened.” << endl;

14 exit(1);

15 }

16

17 ClientData blankClient; // constructor zeros out each data

member

18 // output 100 blank records to file

19 for (int i=0; i<100, i++)

20 outCredit.write(reinterpret_cast < const char * >

(&blankClient),

21 sizeof(ClientData));

22 }

Program 4.3: Creating the credit.dat file with 100 blank records

Once the file credit.dat is created we can use this file to store the desired data

corresponding to the accounts and customers. After entering the basic data, actual

64

Advanced Features of C ++ transaction-processing may be performed. The program below reads the data from

user entered values through keyboard and then uses fstream functions to store data at

desired locations in the file credit.dat. Note that the file is opened in out mode for

writing. An example run of the program 4.4 is presented after the program code. The
run shows how different data values can be entered into the data file. Note that line 19

includes the header file ClientData.h defined in Program 4.1 so the program can use

ClientData objects.

 1

 2 // Writing to a random-access file.

 3 #include <iostream>

 4 using std::cerr;

 5 using std::cin;

 6 using std::cout;

 7 using std::endl;

 8 using std::ios;

 9

10 #include <iomanip>

11 using std::setw;

12

13 #include <fstream>

14 using std::fstream;

15

16 #include <cstdlib>

17 using std::exit; // exit function prototype

18

19 #include "ClientData.h" // ClientData class definition

20

21 int main()

22 {

23 int accountNumber;

24 char lastName[15];

25 char firstName[10];

26 double balance;

27

28 fstream outCredit("credit.dat", ios::in | ios::out |

ios::binary);

29

30 // exit program if fstream cannot open file

31 if (!outCredit)

32 {

33 cerr << "File could not be opened." << endl;

34 exit(1);

35 } // end if

36

37 cout << "Enter account number (1 to 100, 0 to end

input)\n? ";

38

39 // require user to specify account number

40 ClientData client;

41 cin >> accountNumber;

42

43 // user enters information, which is copied into file

44 while (accountNumber > 0 && accountNumber <= 100)

45 {

46 // user enters last name, first name and balance

47 cout << "Enter lastname, firstname, balance\n? ";

48 cin >> setw(15) >> lastName;

49 cin >> setw(10) >> firstName;

50 cin >> balance;

51

 65

A Case Study
52 // set record accountNumber, lastName, firstName and

balance values

53 client.setAccountNumber(accountNumber);

54 client.setLastName(lastName);

55 client.setFirstName(firstName);

56 client.setBalance(balance);

57

58 // seek position in file of user-specified record

59 outCredit.seekp((client.getAccountNumber() - 1) *

60 sizeof(ClientData));

61

62 // write user-specified information in file

63 outCredit.write(reinterpret_cast< const char * >(

&client),

64 sizeof(ClientData));

65

66 // enable user to enter another account

67 cout << "Enter account number\n? ";

68 cin >> accountNumber;

69 } // end while

70

71 return 0;

72 } // end main

Program 4.4: Writing data to credit.dat file

Enter account number (1 to 100, 0 to end input)

? 37

Enter lastname, firstname, balance

? Singh Shweta 0.00

Enter account number

? 29

Enter lastname, firstname, balance

? Tiwari Nisha -24.54

Enter account number

? 96

Enter lastname, firstname, balance

? Jolly Stellina 34.98

Enter account number

? 88

Enter lastname, firstname, balance

? Sen Ajay 258.34

Enter account number

? 33

Enter lastname, firstname, balance

? Ghosh Soumitra 314.33

Enter account number

? 0

66

Advanced Features of C ++ The transaction processing system that we are designing can now be visualized

in figure 4.2:

Figure 4.2: Transaction Processing System Program Structure

We now present our main transaction-processing program (Program 4.5) which uses

the ClientData.h and credit.dat files to achieve “instant” -access processing. As we

discussed earlier, the program manages a bank’s account information. The program
can perform all functions of accounts processing. It can update existing accounts, adds

new accounts, deletes accounts and stores a formatted listing of all current accounts in

a text file. We assume that the program 4.3 has been executed to create the file
credit.dat and that the program of Program 4.4 has been executed to insert the initial

data, before this program can be used for transaction-processing operations.

 1

 2 // This program reads a random-access file sequentially,

updates

 3 // data previously written to the file, creates data to be

placed

 4 // in the file, and deletes data previously stored in the

file.

 5 #include <iostream>

 6 using std::cerr;

 7 using std::cin;

 8 using std::cout;

 9 using std::endl;

10 using std::fixed;

11 using std::ios;

12 using std::left;

13 using std::right;

14 using std::showpoint;

15

16 #include <fstream>

17 using std::ofstream;

18 using std::ostream;

19 using std::fstream;

20

21 #include <iomanip>

22 using std::setw;

Main

Transaction

Processing

program

ClientData Class

(Members and

Constructor)

credit.dat file

 67

A Case Study
23 using std::setprecision;

24

25 #include <cstdlib>

26 using std::exit; // exit function prototype

27

28 #include "ClientData.h" // ClientData class definition

29

30 int enterChoice();

31 void createTextFile(fstream&);

32 void updateRecord(fstream&);

33 void newRecord(fstream&);

34 void deleteRecord(fstream&);

35 void outputLine(ostream&, const ClientData &);

36 int getAccount(const char * const);

37

38 enum Choices { PRINT = 1, UPDATE, NEW, DELETE, END };

39

40 int main()

41 {

42 // open file for reading and writing

43 fstream inOutCredit("credit.dat", ios::in | ios::out |

ios::binary);

44

45 // exit program if fstream cannot open file

46 if (!inOutCredit)

47 {

48 cerr << "File could not be opened." << endl;

49 exit (1);

50 } // end if

51

52 int choice; // store user choice

53

54 // enable user to specify action

55 while ((choice = enterChoice()) != END)

56 {

57 switch (choice)

58 {

59 case PRINT: // create text file from record file

60 createTextFile(inOutCredit);

61 break;

62 case UPDATE: // update record

63 updateRecord(inOutCredit);

64 break;

65 case NEW: // create record

66 newRecord(inOutCredit);

67 break;

68 case DELETE: // delete existing record

69 deleteRecord(inOutCredit);

70 break;

71 default: // display error if user does not select

valid choice

72 cerr << "Incorrect choice" << endl;

73 break;

74 } // end switch

75

76 inOutCredit.clear(); // reset end-of-file indicator

77 } // end while

78

79 return 0;

80 } // end main

81

82 // enable user to input menu choice

83 int enterChoice()

68

Advanced Features of C ++ 84 {

85 // display available options

86 cout << "\nEnter your choice" << endl

87 << "1 - store a formatted text file of accounts" <<

endl

88 << " called \"print.txt\" for printing" << endl

89 << "2 - update an account" << endl

90 << "3 - add a new account" << endl

91 << "4 - delete an account" << endl

92 << "5 - end program\n? ";

93

94 int menuChoice;

95 cin >> menuChoice; // input menu selection from user

96 return menuChoice;

97 } // end function enterChoice

98

99 // create formatted text file for printing

100 void createTextFile(fstream &readFromFile)

101 {

102 // create text file

103 ofstream outPrintFile("print.txt", ios::out);

104

105 // exit program if ofstream cannot create file

106 if (!outPrintFile)

107 {

108 cerr << "File could not be created." << endl;

109 exit(1);

110 } // end if

111

112 outPrintFile << left << setw(10) << "Account" <<

setw(16)

113 << "Last Name" << setw(11) << "First Name" <<

right

114 << setw(10) << "Balance" << endl;

115

116 // set file-position pointer to beginning of

readFromFile

117 readFromFile.seekg(0);

118

119 // read first record from record file

120 ClientData client;

121 readFromFile.read(reinterpret_cast< char * >(&client

),

122 sizeof(ClientData));

123

124 // copy all records from record file into text file

125 while (!readFromFile.eof())

126 {

127 // write single record to text file

128 if (client.getAccountNumber() != 0) // skip empty records

129 outputLine(outPrintFile, client);

130

131 // read next record from record file

132 readFromFile.read(reinterpret_cast< char * >(&client),

133 sizeof(ClientData));

134 } // end while

135 } // end function createTextFile

136

137 // update balance in record

138 void updateRecord(fstream &updateFile)

139 {

140 // obtain number of account to update

141 int accountNumber = getAccount("Enter account to

 69

A Case Study
update");

142

143 // move file-position pointer to correct record in file

144 updateFile.seekg((accountNumber - 1) * sizeof(

ClientData));

145

146 // read first record from file

147 ClientData client;

148 updateFile.read(reinterpret_cast< char * >(&client),

149 sizeof(ClientData));

150

151 // update record

152 if (client.getAccountNumber() != 0)

153 {

154 outputLine(cout, client); // display the record

155

156 // request user to specify transaction

157 cout << "\nEnter charge (+) or payment (-): ";

158 double transaction; // charge or payment

159 cin >> transaction;

160

161 // update record balance

162 double oldBalance = client.getBalance();

163 client.setBalance(oldBalance + transaction);

164 outputLine(cout, client); // display the record

165

166 // move file-position pointer to correct record in

file

167 updateFile.seekp((accountNumber - 1) * sizeof(

ClientData));

168

169 // write updated record over old record in file

170 updateFile.write(reinterpret_cast< const char * >(

&client),

171 sizeof(ClientData));

172 } // end if

173 else // display error if account does not exist

174 cerr << "Account #" << accountNumber

175 << " has no information." << endl;

176 } // end function updateRecord

177

178 // create and insert record

179 void newRecord(fstream &insertInFile)

180 {

181 // obtain number of account to create

182 int accountNumber = getAccount("Enter new account

number");

183

184 // move file-position pointer to correct record in file

185 insertInFile.seekg((accountNumber - 1) * sizeof(

ClientData));

186

187 // read record from file

188 ClientData client;

189 insertInFile.read(reinterpret_cast< char * >(&client

),

190 sizeof(ClientData));

191

192 // create record, if record does not previously exist

193 if (client.getAccountNumber() == 0)

194 {

195 char lastName[15];

196 char firstName[10];

70

Advanced Features of C ++ 197 double balance;

198

199 // user enters last name, first name and balance

200 cout << "Enter lastname, firstname, balance\n? ";

201 cin >> setw(15) >> lastName;

202 cin >> setw(10) >> firstName;

203 cin >> balance;

204

205 // use values to populate account values

206 client.setLastName(lastName);

207 client.setFirstName(firstName);

208 client.setBalance(balance);

209 client.setAccountNumber(accountNumber);

210

211 // move file-position pointer to correct record in

file

212 insertInFile.seekp((accountNumber - 1) * sizeof(

ClientData));

213

214 // insert record in file

215 insertInFile.write(reinterpret_cast< const char *

>(&client),

216 sizeof(ClientData));

217 } // end if

218 else // display error if account already exists

219 cerr << "Account #" << accountNumber

220 << " already contains information." << endl;

221 } // end function newRecord

222

223 // delete an existing record

224 void deleteRecord(fstream &deleteFromFile)

225 {

226 // obtain number of account to delete

227 int accountNumber = getAccount("Enter account to

delete");

228

229 // move file-position pointer to correct record in file

230 deleteFromFile.seekg((accountNumber - 1) * sizeof(

ClientData));

231

232 // read record from file

233 ClientData client;

234 deleteFromFile.read(reinterpret_cast< char * >(

&client),

235 sizeof(ClientData));

236

237 // delete record, if record exists in file

238 if (client.getAccountNumber() != 0)

239 {

240 ClientData blankClient; // create blank record

241

242 // move file-position pointer to correct record in

file

243 deleteFromFile.seekp((accountNumber - 1) *

244 sizeof(ClientData));

245

246 // replace existing record with blank record

247 deleteFromFile.write(

248 reinterpret_cast< const char * >(&blankClient),

249 sizeof(ClientData));

250

251 cout << "Account #" << accountNumber << "

deleted.\n";

 71

A Case Study
252 } // end if

253 else // display error if record does not exist

254 cerr << "Account #" << accountNumber << " is

empty.\n";

255 } // end deleteRecord

256

257 // display single record

258 void outputLine(ostream &output, const ClientData &record

)

259 {

260 output << left << setw(10) <<

record.getAccountNumber()

261 << setw(16) << record.getLastName()

262 << setw(11) << record.getFirstName()

263 << setw(10) << setprecision(2) << right << fixed

264 << showpoint << record.getBalance() << endl;

265 } // end function outputLine

266

267 // obtain account-number value from user

268 int getAccount(const char * const prompt)

269 {

270 int accountNumber;

271

272 // obtain account-number value

273 do

274 {

275 cout << prompt << " (1 - 100): ";

276 cin >> accountNumber;

277 } while (accountNumber < 1 || accountNumber > 100);

278

279 return accountNumber;

280 } // end function getAccount

Program 4.5: Main transaction-processing program

The program presents a menu driven interface to the user. The choices available to the

user are 1-Print, 2-Update, 3-New account, 4- Delete account and 5-End processing.
These menu choices are realized through following five options:

Option1: calls function createtextFile to store a formatted list of all account
information in a text file called print.txt that may be printed. The function

createTextFile takes an fstream object as an argument to be used to input data from

the credit.dat file. It invokes istream member function read and uses sequential access
to input data from credit.dat. The function outputLine is used to output the data to file

print.txt. Note that the createTextFile uses istream member function seekg to ensure

that the file-position pointer is at the beginning of the file.

72

Advanced Features of C ++

Option2 calls updateRecord to update an account. This function updates only an
existing record, so the function first determines whether the specified record is empty.

Lines 128-129 read data into object client, using istream member function read. Then

line 132 compares the value returned by getAccountNumber of the client object to
zero to determine whether the record contains information. If this value is zero, lines

154-155 print an error message indicating that the record is empty. If the record

contains information, line 134 displays the record, using function outputLine, line 139

inputs the transaction amount and lines 142-151 calculate the new balance and rewrite
the record to the file. A typical output for option 2 is:

Enter your choice

1 - store a formatted text file of accounts

2 - update an account

3 - add a new account

4 - delete an account

5 - end program

2

Enter account to update (1 – 100) : 37

37 Singh Shweta 0.0

Enter charge (+) or payment (-): +87.9988

37 Singh Shweta 87.99

Option3 calls function newrecord (lines 159-201) to add a new account to the file. If

the user enters an account number for an existing account, newRecord displays an

error message indicating that the account exists (lines 199-200). A typical output for
option 3 is:

Enter your choice

1 - store a formatted text file of accounts

2 - update an account

3 - add a new account

4 - delete an account

5 - end program

1

Account Last Name First Name Balance

29 Tiwari Nisha -24.54

33 Ghosh Soumitra 314.33

37 Singh Shweta 0.0

88 Sen Ajay 258.34

96 Jolly Stellina 34.98

 73

A Case Study

Option4 calls function deleteRecord (lines 204-235) to delete a record from the file.

Line 207 prompts the user to enter the account number. Only an existing record may
be deleted, so if the specified account is empty, line 234 displays an error message. If

the account exists, lines 227-229 reinitialize that account by copying an empty record

(blank-Client) to the file. Line 231 displays a message to inform the user that the
record has been deleted. A typical output for option 4 is:

Enter your choice

1 - store a formatted text file of accounts

2 - update an account

3 - add a new account

4 - delete an account

5 - end program

4

Enter account to delete (1 – 100) : 29

Account #29 deleted.

Option5 terminating the program.

Enter your choice

1 - store a formatted text file of accounts

2 - update an account

3 - add a new account

4 - delete an account

5 - end program

5

This transaction-processing system presents an example of a large multi-file program.

The program demonstrates use of various features of C++ ranging from classes and

methods, constructors, polymorphism, templates and stream I/O capabilities. The
program illustrates how C++ language features can be used to solve real world

applications by designing and deploying C++ programs.

Enter your choice

1 - store a formatted text file of accounts

2 - update an account

3 - add a new account

4 - delete an account

5 - end program

3

Enter new account number (1 – 100) : 22

Enter lastname, firstname, balance

? Popli Sukanya 247.45

74

Advanced Features of C ++ It would also be in order to discuss here the fact that the sequential files are

inappropriate for instant-access applications, in which a particular record must be

located immediately. Common instant-access applications are airline reservation

systems, banking systems, point-of-sale systems, automated teller machines and other
kinds of transaction-processing systems that require rapid access to specific data. A

bank might have hundreds of thousands (or even millions) of other customers, yet,

when a customer uses an automated teller machine, the program checks that

customer’s account in a few seconds or less for sufficient funds. This kind of instant
access is made possible with random-access files. Individual records of a random-

access file can be accessed directly (and quickly) without having to search other
records. As we have said, C++ does not impose structure on a file. So the application

that wants to use random-access files must create them. A variety of techniques can be

used. Perhaps the easiest method is to require that all records in a file be of the same
fixed length. Using same-size, fixed-length records makes it easy for a program to

calculate (as a function of the record size and the record key) the exact location of any

record relative to the beginning of the file. Using a database based approach is a

common choice for many of these applications.

C++ provides rich set of features for designing various applications to solve various

real world problems. A number of useful applications in different domain cab be
designed using C++. Applications like passenger reservation systems, automated plant

control, restaurant management, library management are some possible applications

which can be implemented using C++ features.

4.5 SUMMARY

In the previous chapters, we have discussed various features of C++. C++ provides a
rich set of features and capabilities that can be used to write useful programs to solve

a number of real world problems. This unit presents a case study of designing and

implementing a transaction- processing system in banking domain. The design
involves creating necessary data files to store accounts and customer information and

then accessing them through suitable code for writing data, appending data,

performing credit operations and displaying the results. The program design makes
use of various features of C++, including its capability to design multi-file programs.

The file processing capability of C++ coupled with the rich I/O capability through

stream classes can be used to design many interesting applications. This unit

demonstrated use and application of various C++ features for solving one real world
large scale problem. C++ can be used to solve many other simple and sophisticated

real world problems.

4.6 FURTHER READINGS

1. E. Balaguruswamy, Object Oriented Programming with C++, Tata McGraw Hill,

2010.

2. P. Deitel and H. Deitel, C++: How to Program, PHI, 7
th
ed, 2010.

3. B. Strousstrup, Programming – Principles and Practices using C++, Addison

Wesley, 2009.

4. R. Lafore, Object Oriented Programming in TURBO C++, Galgotia Publications,

1994.

