
UNIT 5 VB SCRIPT

Structure

5.0 Introduction
5.1 Objectives
5.2 What Is VBScript?
5.3 Adding VBScript Code to an HTML Page
5.4 VB Script Basics

5.4.1 VBScript Data Types
5.4.2 VBScript Variables
5.4.3 VBScript C~nstants
5.4.4 VBScript Operators

5.5 Using Conditional Statements
5.6 Looping Through Code
5.7 VBScript Procedures
5.8 VBScript Coding Conventions
5.9 Dictionary Object in VBScript

5.9.1 Methods: VBScript Dictionary Object
5.9.2 VBScript Dictionary Object Properties

5.10 Err Object
5.10.1 Methods: VBScript Err Object
5.10.2 Properties: VBScript Err Object

5.1 1 Summary
5.12 Solutions1 Answers
5.13 Further Readings

5.0 INTRODUCTION

After learning JavaScript to make WebPages that require some logical processing, we
will discuss another very common scripting language, called VB Script. VBScript is
Microsoft's scripting language. It enables us to write programs that enhance the power
of Web pages by allowing us,to control their behaviour. Although HTML enables us
to develop Web pages, we cannot incorporate into them conditions or business rules
without using another tool like a scripting language.

In this unit we will discuss the programming constructs that are supported by
VBScript. The constructs will enable you to implement all kinds of logic for your
Web pages.

We will also discuss about Objects in VBScript and talk about the Dictionary object in
detail as an example. Error handling is an important part of any kind of programming.
In this unit we~iscuss error handling in VBScript. The Err object id used for the
purpose by VBScript

5.1 OBJECTIVES

The objective of this unit is to explain the basics of VBScript. After completing this
unit, you will be able to write code for Web pages using VBScript. You will be able to
understand the following components of VBScript:

Variables
Loops
Conditional statements
Procedures
Properties and Methods of Dictionary Object
Properties and Methods of the ERR Object.

5.2 WHAT IS VBSCRIPT?
VBScript

VBScript is a member of Microsoft's Visual Basic family of development products.
Other members include Visual Basic (Professional and Standard Editions) and Visual
Basic for Applications, which is the scripting language for Microsoft Excel. VBScript
is a scripting language for HTML pages on the World Wide Web and corporate
intranets. VBScript is powerful and has almost all the features of Visual Basic. One of
the things you should be concerned about is the safety and security of client machines
that access your Web site. Microsoft took this consideration into account when
creating VBScript. Potentially dangerous operations that can be done in Visual Basic
have been removed from VBScript, including the capability to access dynamic link
libraries directly and to access the file system on the client machine.

5.3 ADDING VBSCRIPT CODE TO AN HTML PAGE

You can use the SCRIPT element to add VBScript code to an HTML page.

The <SCRIPT' Tag
VBScript code is written within paired <SCRIPT> tags. For example, a procedure
to test a delivery date might appear as follows:

<SCRIPT LANGUAGE="VBScript">

Function CanDeliver(Dt)
CanDeliver = (CDate(Dt) - Now()) > 2

End Function
-->

</SCRIPT>

Beginning and ending <SCRIPT, tags surround the code. The LANGUAGE
attribute indicates the scripting language. You must specify the language because
browsers can use other scripting languages, such as JavaScript. Notice that the
CanDeliver function is embedded in comment tags (<!-- and -->). This prevents
browsers that do not support the <SCRIPT> tag from displaying the code on the

Since the example is a general function - it is not tied to any particular form
control - you can include it in the HEAD section of the page as shown below:

<HTML>
<HEAD>
<TITLE>Place Your Order</TITLE>
<SCRIPT LANGUAGE="VBScript">

Function CanDeliver(Dt)
CanDeliver = (CDate(Dt) - Now()) > 2

End Function
-->

4SCRIP-P
(/HEAD>

<BODY>
...

Scripting Languages You can use SCRIPT blocks anywhere in an HTML page. You can put them in
both the BODY and HEAD sections. However, you will probably want to put all
general-purpose scripting code in the HEAD section in order to keep all the code
together. Keeping your code in the HEAD section ensures that all the code is read
and decoded before it is needed by any calls from within the BODY section.

One notable exception to this rule is that you may want to provide inline scripting
code within forms to respond to the events of objects in your form. For example,
you can embed scripting code to respond to a button click in a form as shown
below.

<HTML>
<HEAD>
<TITLE>Test Button Events</TITLE>
</HEAD>

<BODY>
<FORM NAME="Form 1 ">

<INPUT TYPE="ButtonN NAME="Button 1 "
VALUE="CIickW>

<SCRIPT FOR="Button 1 " EVENT="onClick"
LANGUAGE="VBScript">

MsgBox "Button Pressed!"
</SCRIPT>

</FORM>
</BODY>

</HTML>

This example will display a button on the Web Page. When you click on the
button it would display a message box stating "Button Pressed".

Most of your code will appear in either Sub or Function procedures and will be
called only when the code you have written causes that function to execute.
However, you can write VBScript code outside procedures, but still within a
SCRIPT block. This code is executed only once, when the HTML page loads.
This allows you to initialize data or dynamically change the look of your Web
page when it loads.

5.4 VB SCRIPT BASICS

This sechon will discuss the basics of VBScript and describe concepts like datatypes,
loops and others.

5.4.1 VBScript Data Types

VBScript has only one data type called a Variant. A Variant is a special kind of
data type that can contain different kinds of information, depending on how it is
used. Because Variant is the only data type in VBScript, it is also the data type
returned by all functions in VBScript.

At its simplest, a Variant can contain either numeric or string information. A
Variant behaves as a number when you use it in a numeric context and as a string
when you use it in a string context. That is, if you are working with data that looks
like numbers, VBScript assumes that it is a number and does whatever is most
appropriate for numbers. Similarly, ifyou are working with data that can only be
string data, VBScript treats it as string data. You can always make numbers

132 behave as strings by enclosing them in quotation marks (" ").

Variant Subtypes

Beyond the simple numeric or string classifications, a Variant can make further
distinctions about the specific nature of numeric information. For example, you
can have numeric information that represents a date or a time. When used with
other date or time data, the result is expressed as a date or a time. You can also
have a rich variety of numeric information ranging from Boolean values to huge
floating-point numbers. These different categories of information that can be
contained in a Variant are called subtypes. Most of the time, you can just put the
kind of data you want in a Variant, and the Variant behaves in a way that is most
appropriate for the data it contains.

The following table shows the subtypes of data that a Variant can contain.

You can use conversion functions to convert data from one subtype to another. In
addition, the VarType function returns information about how your data is stored
within a Variant.

5.4.2 VBScript Variables

A variable is a convenient placeholder that refers to a computer memory location
where you can store program information that may change while your script is
running. For example, you might create a variable called Clickcount to store the
number of times a user clicks an object on a particular Web page. Where the
variable is stored in computer memory is unimportant. What is important is that
you only have to refer to a variable by name to see its value or to change its value.
In VBScript, variables are always of one fundamental data type, Variant.

Declaring Variables

You declare variables explicitly in your script using the Dim statement, the Public
statement, and the Private statement. For example:

Dim DegreesFahrenheit

Scripting Languages Dim Top, Bottom, Left, Right

You can also declare a variable implicitly by simply using its name in your script.
'That is not generally a good practice because you could misspell the variable
name in one or more places, causing unexpected results when your script is
running. For that reason, the Option Explicit statement is available to require
explicit declaration of all variables.

Naming Restrictions

Variable names follow the standard rules for naming anything in VBScript. A
variable name:

Must begin with an alphabetic character.
Cannot contain an embedded period.
Must not exceed 255 characters.
Must be unique in the scope in which it is declared.

Scope and Lifetime of Variables

The scope of a variable is determined by where you declare it. When you declare
a variable within a procedure, only code within that procedure can access or
change the value of that variable. It has local scope and is called a procedure-level
variable. If you declare a variable outside a procedure, you make it visible to all
the procedures in your script. This is a script-level variable, and it has script-level
scope.

How long a variable exists defines its lifetime. The lifetime of a script-level
variable extends from the time it is declared until the time the script is finished
running. At procedure level, a variable exists only as long as you are in the
procedure. When the procedure exits, the variable is destroyed. Local variables
are ideal as temporary storage space when a procedure is executing. You can have
local variables of the same name in several different procedures because each is
recognized only by the procedure in which it is declared.

Assigning Values to Variables

Values are assigned to variables creating an expression as follows: the variable is
on the left side of the expression and the value you want to assign to the variable
is on the right, with the '=' sign being the assignment operator. For example:

B = 200

Scalar Variables and Array Variables

Most of the time, you just want to assign a single value to a variable you have
declared. A variable containing a single value is a scalar variable. At other times,
it is convenient to assign more than one related value to a single variable. Then
you can create a variable that can contain a series of values. This is called an array
variable. Array variables and scalar variables are declared in the same way, except
that the declaration of an array variable uses parentheses () following the variable
name. In the following example, a single-dimension array containing II_ekments
is declared:

Dim A(10)

Although the number shown in the parentheses is 10, all arrays in VBScript are
counted from base 0, so that this array actually contains 1 1 elements. In such an
array, the number of array elements is always the number shown in parentheses

134
plus one. This kind of array is called a fixed-size array.

You assign data to each of the elements of the array using an index into the array.
Beginning at zero and ending at 10, data can be assigned to the elements of an
array as follows:

Similarly, the data can be retrieved from any element using an index into the
particular array element you want. For example:

Somevariable = A(8)

Arrays are not limited to a single dimension. You can have as many as 60
dimensions, although most people cannot comprehend more than three or four
dimensions. Multiple dimensions are declared by separating an array's size
numbers in the parentheses with commas.'In the following example, the MyTable
variable is a two-dimensional array consisting of 6 rows and 1 1 columns:
Dim MyTable(5, 10)

In a two-dimensional array, the first number is always the number of rows;
the second number is the number of columns.

You can also declare an array whose size changes while your script is running.
This is called a dynamic array. The array is initially declared within a procedure
using either the Dim statement or using the ReDim statement. However, for a
dynamic array, no size or number of dimensions is placed inside the parentheses.

Dim MyArray()
ReDim AnotherArrayO

To use a dynamic array, you must subsequently use ReDim to determine the
number of dimensions and the size of each dimension. In the following example,
ReDim sets the initial size of the dynamic array to 25. A subsequent ReDim
statement resizes the array to 30, but uses the Preserve keyword to preserve the
contents of the array as the resizing takes place.

ReDim MyArray(25)

ReDim Preserve MyArray(30)

There is no limit to the number of times you can resize a dynamic array, but
you should know that if you make an array smaller than it was, you lose the
data in the eliminated elements.

5.4.3 VBScript Constants

A constant is a meaningful name that takes the place of a number or string and
never changes. VBScript defines a number of intrinsic constants. You can get
detailed information about these intrinsic constants from the VBScript Language

Scripting Languages Creating Constants

You create user-defined constants in VBScript using the Const statement. This
lets you create string or numeric constants with meaningful names and allows you
to assign them literal values. For example: <

Const MyString = "This is my string."
Const MyAge = 49

Note that the string literal is enclosed in quotation marks (" "). Quotation marks
are the most obvious way to differentiate string values from numeric values. Date
literals and time literals are represented by enclosing them in number signs (#).
For example:

Const CutoffDate = #6-1-97#

You may want to adopt a naming scheme to differentiate constants from variables.
This will save you from trying to reassign constant values while your script is
running. For example, you might want to use a "vb" or "con" prefix on your
constant names, or you might name your constants in all capital letters.
Differentiating constants from variables eliminates confusion as you develop
more complex scripts.

5.4.4 VBScript Operators

VBScript has a full range of operators, including arithmetic operators, comparison
operators, concatenation operators, and logical operators.

Operator Precedence

When several operations occur in an expression, each part is evaluated and
resolved in a predetermined order called operator precedence. You can use
parentheses to override the order of precedence and force some parts of an
expression to be evaluated before others. Operations within parentheses are
always performed before those outside. Within parentheses, however, standard
operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic
operators are evaluated first, comparison operators are evaluated next, and logical
operators are evaluated last. Comparison operators all have equal precedence; that
is, they are evaluated in the left-to-right order in which they appear. Arithmetic
and logical operators are evaluated in the following order of precedence.

136

The associativity of the operators is left to right. When multiplication and division
occur together in an expression, each operation is evaluated as it occurs from left
to right. Likewise, when addition and subtraction occur together in an expression,
each operation is evaluated in order of appearance from left to right.

The string concatenation (&) operator is not an arithmetic operator, but in
precedence it falls after all arithmetic operators and before all comparison
operators. The Is operator is an object reference comparison operator. It does not
compare objects or their values; it checks only to determine if two object
references refer to the same object.

5.5 USING CONDITIONAL STATEMENTS

You can control the flow of your script with conditional statements and looping
statements. Using conditional statements, you can write VBScript code that makes
decisions and repeats actions. The following conditional statements are available
in VBScript:

If. .. Then ... Else statement
Select Case statement

Making Decisions Using If...Then...Else

The If. .. Then ... Else statement is used to evaluate whether a condition is True or
False and, depending on the result. to specify one or more statements to execute.
Usually the condition is an expression that uses a comparison operator to compare
one value or variable with another. For information about comparison operators,
see Comparison Operators. If. .. Then ... Else statements can be nested to as many
levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax for
the If. .. Then ... Else statement. The following example shows the single-line
syntax. Notice that this example omits the Else keyword.

Sub FixDate()
Dim myDate
myDate = #2/13/95#
If myDate < Now Then myDate = Now

End Sub

To run more than one line of code, you must use the multiple-line (or block)
syntax. This syntax includes the End If statement, as shown in the following

Scripting Languages Running Certain Statements if a Condition is True and Running Others
if a Condition is False

You can use an If...Then...Else statement to define two blocks of executable
statements: one block to run if the condition is True, the other block to run if
the condition is False.

Sub AlertUser(value)
If value = 0 Then

AlertLabel.ForeColor = vbRed
AlertLabel.Font.Bold = True
AlertLabel.Font.Italic = True

Else
AlertLabel.Forecolor = vbBlack
AlertLabel.Font.Bold = False
AlertLabel.Font.1tal ic = False

End If
End Sub

The following flow chart explains the flow of the above example.

AlertLabel.ForeColor = vbRed AlertLabel.ForeColor = vbBlack
AlertLabel.Font.Bold = True AlertLabel.Font.Bold = False
AlertLabel.Font.Italic = True AlertLabel.Font.1talic = False

Deciding Between Several Alternatives

A variation on the If. .. Then...Else statement allows you to choose from
several alternatives. Adding ElseIf clauses expands the functionality of the
If...Then ... Else statement so that you can control program flow based on '
different possibilities. For example:

Sub ReportValue(va1ue)
If value = 0 Then

MsgBox value
Elself value = 1 Then

MsgBox value
138

ElseIf value = 2 then
Msgbox value

Else
Msgbox "Value out of range!"

End If

You can add as many ElseIf clauses as you need to provide alternative choices.
Extensive use of the ElseIf clauses often becomes cumbersome. A better way to
choose between several alternatives is the Select Case statement.

Making Decisions with Select Case

The Select Case structure provides an alternative to If,..Then.,.ElseIf for
selectively executing one block of statements from among multiple blocks of
statements. A Select Case statement provides capability similar to the
If...Then ... Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated once,
at the top of the structure. The result of the expression is then compared with the
values for each Case in the structure. If there is a match, the block of statements
associated with that Case is executed:

Select Case Document.Form1 .CardType.Options(SelectedIndex).Text
Case "MasterCard"

DisplayMCLogo
ValidateMCAccount

Case "Visa"
DisplayVisaLogo
Val idateVisaAccount

Case "American Express"
DisplayAMEXCOLogo
ValidateAMEXCOAccount

Case Else
DisplayUnknownImage
PromptAgain

End Select

Notice that the Select Case structure evaluates an expression once at the top of the
structure. In contrast, the If...Then...ElseIf structure can evaluate a different
expression for each ElseIf statement. You can replace an If...Then...ElseIf
structure with a Select Case structure only if each ElseIf statement evaluates the
same expression.

5.6 LOOPING THROUGH CODE

Using Loops to Repeat Code

Looping allows you to run a group of statements repeatedly. Some loops repeat
statements until a condition is False; others repeat statements until a condition is
True. There are also loops that repeat statements a specific number of times.
The following looping statements are available in VBScript:

Do ... loo^: Loops while or until a condition is True.
While ... Wend: Loops while a condition is True.
For ... Next: Uses a counter to run statements a specified number of times.

Scripting Languages For Each ... Next: Repeats a group of statements for each item in a collection or
each element of an array.

Using Do Loops

You can use Do ... Loop statements to run a block of statements an indefinite
number of times. The statements are repeated either while a condition is True or
until a condition becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do ... Loop statement. You can
check the condition before you enter the loop (as shown in the following
ChkFirstWhile example), or you can check it after the loop has run at least once
(as shown in the ChkLastWhile example). In the ChkFirstWhile procedure, if
myNum is set to 9 instead of 20, the statements inside the loop will never run. In
the ChkLastWhile procedure, the statements inside the loop run only once because
the condition is already False.

Sub ChkFirstWhile()
Dim counter, myNum
counter = 0
myNum = 20
Do While myNum > 10

myNum = myNum - 1
counter = counter + 1

LOOP
MsgBox "The loop made " & counter & " repetitions."

End Sub

Sub ChkLastWhileO
Dim counter, myNum
counter = 0
myNum = 9
Do

myNum = myNum - 1
counter = counter + 1

Loop While myNum > 10
MsgBox "The loop made " & counter & " repetitions."

End Sub

VBScript

Figure 5.1: Execution Plan of the Second Loop in Figure 5.9

Repeating a Statement Until a Condition Becomes True

You can use the Until keyword in two ways to check a condition in a
Do ... Loop statement. You can check the condition before you enter the loop
(as shown in the following ChkFirstUntil example), or you can check it after
the loop has run at least once (as shown in the ChkLastUntil example). As
long as the condition is False, the loop continues.

Sub ChkFirstUntil()
Dim counter, myNum
counter = 0
myNum = 20
Do Until myNum = 10

myNum = myNum - 1
counter = counter + 1

Sub ChkLastUntil()
Dim counter, myNum
counter = 0

myNum = myNum + 1
counter = counter + 1

Exiting a Do ... Loop Statement from Inside the h o p

You can exit a Do ... Loop by using the Exit Do statement. Because you usually
want to exit only in certain situations, such as to avoid an endless loop, you

Scripting Languages should use the Exit Do statement in the True statement block of an
If...Then...Else statement. If the condition is False, the loop runs as usual.
Otherwise, you p~abably did not need a loop in the first place.

In the following example, myNum is assigned a value that creates an endless loop.
The If...Then...Else statement checks for this condition, preventing the endless
repetition. I

Sub ExitExample()
Dim counter, myNum
counter = 0
myNurn = 9
Do Until myNum = 10

myNum = myNum - 1
counter = counter + 1
If myNum < 10 Then Exit Do

Loop
M S ~ B O X "The loop made " & counter & " repetitions."

End Sub 1
Using While...Wend

The While...Wend statement is provided in VBScript for those who are
familiar with its usage. However, because of the lack of flexibility in
While ... Wend, it is recommended that you use Do ... Loop instead.

Using For...Next

You can use Fer ... Next statements to run a block of statements a specific
number of times. For loops, use a counter variable whose value is increased or
decreased with each repetition of the loop.

For example, the following procedure causes a procedure called MyProc to
execute 50 times. The For statement specifies the counter variable x and its
start and end values. The Next statement increments the counter variable by 1.

Sub DoMyProc5OTimes()
Dim x
For x = 1 To 50

MyProc
Next

End Sub

Using the Step keyword, you can increase or decrease the counter variable by the
value you specifj.. In the following example, the counter variable j is incremented
by 2 each time the loop repeats. When the loop is finished, total is the sum of 2,4,
6,8, and 10.

Sub TwosTotal()
Dim j, total
Forj = 2 To 10 Step2

total = total + j
Next
MsgSox "The total is " & total

End Sub

To decrease the counter variable, you use a negative Step value. You must specify
an end value that is less than the start value. In the following example, the counter
variable myNum is decreased by 2 each time the loop repeats. When the loop is
finished, total is the sum of 16, 14, 12, 10, 8, 6,4, and 2.

Sub NewTotal()
Dim myNum, total
For myNum = 16 To 2 Step -2

total = total + myNum
Next
MsgBox "The total is " & total

End Sub

'You can exit any For...Next statement before the counter reaches its end value by
using the Exit For statement. Because you usually want to exit only in certain
:iituations, such as when an error occurs, you should use the Exit For statement in
ihe True statement block of an If. .. Then. ..Else statement. If the condition is
]False, the loop runs as usual. Otherwise you probably did not need to use the
loop in the first place.

Using For Each ... Next

I 4 For Each ... Next loop is similar to a For ... Next loop. Instead of repeating the
statements a specified number of times, a For Each...Next loop repeats a group of
statements for each item in a collection of objects or for each element of an array.
This is especially helpful if you do not know how many elements are present in a
collection.

In the following HTML code example, the contents of a Dictionary object are
used to place text in several text boxes:

CHTML)
<HEAD>(TITLE>Forms and Elementst/TITLE>4HEAD>
<SCRIPT LANGUAGE="VBScriptW>
<!--
Sub cmdChange-OnClick

Dim d 'Create a variable
Set d = CreateObject("Scripting.Dictionary")
d.Add "Ow, "Athens" 'Add some keys and items
d.Add "1 ", "Belgrade"
d.Add "2", "Cairo"

a = d.items
For i = 0 To d.Count
document.frmForm.Elements(i).Value = a(i)

Next
End Sub
-->
4SCRIPT>
<BODY>

Scripting Languages <CENTER>
<FORM NAME="frmForm"> <p>

<Input Type = "Textn><p>
<Input Type = "Text"><p>
<Input Type = "TextW><p>
<Input Type = "Button" NAME="cmdChange" VALUE="Click

HereU><p>
</FORM>
</CENTER>
</BODY>
</HTML>

5.7 VBSCRIPT PROCEDURES

In VBScript there are two kinds of procedures; the Sub procedure and the
Function procedure.

Sub Procedures

A Sub procedure is a series of VBScript statements, enclosed by Sub and End
Sub statements, that perform actions but don't return a value. A Sub procedure
can take arguments (constants, variables, or expressions that are passed by a
calling procedure). If a Sub procedure has no arguments, its Sub statement must
include an empty set of parentheses ().

The following code shows a Sub procedure uses two intrinsic, or built-in, VBScript
functions, MsgBox and In~utBox, to prompt a user for some information. It then
displays the results of a calculation based on that information. The calculation is
performed in a Function procedure created using VBScript. The Function
procedure is shown after the following discussion.

Sub ConvertTemp()
temp = InputBox("Please enter the temperature in degrees F.", 1)
MsgBox "The temperature is " & Celsius(temp) & " degrees C."

End Sub

Function Procedures

A Function procedure is a series of VBScript statements enclosed by the
Function and End Function statements. A Function procedure is similar to a
Sub procedure, but can also return a value. A Function procedure can take
arguments (constants, variables, or expressions that are passed to it by a calling
procedure). If a Function procedure has no arguments, its Function statement
must include an empty set of parentheses (). A Function returns a value by

assigning a value to its name in one or more statements of the procedure. The
return type of a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from
degrees Fahrenheit. When the function is called from the ConvertTemp Sub
procedure, a variable containing the argument value is passed to the function. The
result of the calculation is returned to the calling procedure and displayed in a
message box.

Sub ConvertTemp()
temp = InputBox("Please enter the temperature in degrees F.", 1)
MsgBox "The temperature is " & Celsius(temp) & " degrees C."

End Sub

Function Celsius(fDegrees)
Celsius = (Degrees - 32) * 5 / 9

End Function

Getting Data into and out of Procedures

Each piece of data is passed into your procedures using an argument. Arguments
serve as placeholders for the data you want to pass into your procedure. You can
name your arguments with any valid variable name. When you create a procedure
using either the Sub statement or the Function statement, parentheses must be
included after the name of the procedure. Any arguments are placed inside these
parentheses, separated by commas. For example, in the following example,
Degrees is a placeholder for the value being passed into the Celsius function for
conversion:

Function Celsius(fDegrees)
Celsius = (fDegrees - 32) * 5 / 9

End Function

To get data out of a procedure, you must use a Function. Remember, a Function
procedure can return a value; a Sub procedure cannot.

Using Sub and Function Procedures in Code

m- A Function in your code must always be used on the right side of a variable
assignment or in an expressicm, For.example:

Temp = Celsius(fDegrees)
or
MsgBox "The Celsius temperature is " & Celsius(fDegrees) & " degrees."

To call a Sub procedure from another procedure, you can just type the name of
the procedure along with values for any required arguments, each separated by a
comma. The Call statement is not required, but if you do use it, you must enclose
any arguments in parentheses.

The following example shows two calls to the MyProc procedure. One uses the
Call statement in the code; the other does not. Both do exactly the same thing.
Call MyProc(firstarg, secondarg)
MyProc firstarg, secondarg

Notice that the parentheses are omitted in the call when the Call statement isn't

Scripting Languages 5.8 VB SCRIPT CODING CONVENTIONS

Coding conventions are suggestions that may help you write code using Microsoft
Visual Basic Scripting Edition. Coding conventions can include the following:

Naming conventions for objects, variables, and procedures
Commenting conventions
Text formatting and indenting guidelines

The main reason for using a consistent set of coding conventions is to standardize
the structure and coding style of a script or set of scripts so that you and others
can easily read and understand the code. Using good coding conventions results in
precise, readable, and unambiguous source code that is consistent with ather
language conventions and is as intuitive as possible.

Constant Naming Conventions

Earlier versions of VBScript had no mechanism for creating user-defined
constants. Constants, if used, were implemented as variables and distinguished
from other variables using all uppercase characters. Multiple words were
separated using the underscore (J character. For example:

USER-LIST-MAX
NEW-LINE

While this is still an acceptable way to identify your constants, you may want to
use an alternative naming scheme, now that you can create true constants using
the Const statement. This convention uses a mixed-case format in which constant
names have a "con" prefix. For example:

Variable Naming Conventions

For purposes af readability and consistency, use the following prefixes with
descriptive names for variables in your VBScript code.

Scope Where Variable is Visibility
Declared

Procedure-level Event, Function, or Sub Visible in the procedure
procedure in which it is declared

Script-level HEAD section of an Visible in every
HTML page, outside any procedure in the script
procedure

Variable Scope Prefixes

As script size grows, so does the value of being able to quickly differentiate the
scope of variables. A one-letter scope prefix preceding the type prefix provides
this, without unduly increasing the size of variable names.

Scope Prefix Example
Procedure-level None DblPrice
Script-level S SDblPrice

Descriptive Variable and Procedure Names

The body of a variable or procedure name should use mixed case and should be as
complete as necessary to describe its purpose. In addition, procedure names
should begin with a verb, such as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to
- help keep name length reasonable. In general, variable names greater than 32

characters can be difficult to read. When using abbreviations, make sure they are
consistent throughout the entire script. For example, randomly switching between
Cnt and Count within a script or set of scripts may lead to confusion.

Object Naming Conventions

The following table lists recommended conventions for objects you may
encounter while programming VBScript.

Code Commenting Conventions

All procedures should begin with a brief comment describing what they do. This
description should not describe the implementation details (how it does it)
because these often change over time, resulting in unnecessary comment
maintenance work, or worse, erroneous comments. The code itself and any
necessary inline comments describe the implementation.

Arguments passed to a procedure should be described when their purpose is not
obvious and when the procedure expects the arguments to be in a specific range.
Return values for functions and variables that are changed by a procedure,
especially through reference arguments, should also be described at the beginning
of each procedure.

Procedure header comments should include the following section headings. For
examples, see the following table that explains the section heading and the
comment contents to be inserted while developing code.

Section Heading Comment Contents
Purpose What the procedure does (not how).
Assumptions List of any external variable, control, or other element whose

state affects this procedure.
Effects List of the procedure's effect on each external variable, control,

or other element.
Inputs Explanation of each argument that is not obvious. Each

argument should be on a separate line with inline comments.
Return Values Explanation of the value returned.

Remember the Following Points

Every important variable declaration should include an inline comment describing
the use of the variable being declared.
Variables, controls, and procedures should be named clearly enough that inline

Scripting Languages At the beginning of your script, you should include an overview that describes the
script, enumerating objects, procedures, algorithms, dialog boxes, and other
system dependencies. Sometimes a piece of pseudocode describing the algorithm
can be helpful.

Formatting Your Code

Screen space should be conserved as much as possible, while still allowing code
formatting to reflect logic structure and nesting. Here are a few pointers:

Standard nested blocks should be indented four spaces.
The overview comments of a procedure should be indented one space.
The highest level statements that follow the overview comments should be
indented four spaces, with each nested block indented an additional four
spaces. For example, see the code below:

..
' Purpose: Locates the first occurrence of a specified user
I in the UserList array.
' Inputs: strUserList(): the list of users to be searched.
I strTargetUser: the name of the user to search for.
' Returns: The index of the first occurrence of the strTargetUser
I in the strUserList array.
I If the target user is not found, return -1.
..

Function intFindUser (strUserList(), strTargetUser)
Dim i Loop counter.
Dim blnFound ' Target found flag
intFindUser = - 1
i = O ' Initialize loop counter
Do While i <= LIbouhd(strUserList) and Not blnFound

If strUserList(i) = strTargetUser Then
blnFound = True ' Set flag to True
intFindUser = i ' Set return value to loop count

End If
i = i + l ' Increment loop counter

Loop
End Function

Cfipck Your Progress 2

1, Write a menu - driven program in VBScript to check wl~ethcr a :~limber i:
even, odd and whether it is prime.

2. Write a procedure to check nilether a string is a palir!dr.onie.

5.9 DICTIONARY OBJECT IN VBSCRIPT

The Dictionary object stores data as key, item pairs. A Dictionary object is the
equivalent of a PERL associative array. Items, which can be any form of data, are
stored in the array. Each item is associated with a unique key. The key is used to
retrieve an individual item and is usually an integer or a string, but can be anything
except an array.
The following code illustrates how to create and use a Dictionary object:

7
VBScript

<HEAD>(TITLE>Forms and EIements(/TITLE></HEAD>
<SCRIPT LANGUAGE="VBScript">

'Create a Script Level variable
Set d = CreateObject("Scripting.Dictionar=)

Sub cmdAdd-OnClick
d.Add "OM, "Amar" 'Add some keys and items
d.Add " 1 ", "Bunty"
d.Add "2", "Chaman"

a = d.items
For i = 0 To d.Count .
document.frmForm.Elements(i).Value = a(i)

Sub cmdExist-onclick
d.Add "a", "Amar" 'Add some keys and items.
d.Add "b", "Bunty"
d.Add "c", "Chaman"
If d.Exists("c") Then

msgbox "C key exists."

msgbox "C key does not exist."

Sub cmdKey-onCl ick
d.Add "a", "Amar" 'Add some keys and items.
d.Add "b", "Bunty"
d.Add "c", "Chaman"
d.Key("cfi) = "d" 'Set key for "c" to "d".

End Function

Sub cmdKeys-onCl ick
d.Add "a", "Amar" 'Add some keys and items.
d.Add "b", "Bunty"
d.Add "c", "Chaman"

For i = 0 To d.Count
document.frmForm.Elements(i).Value = a(i)

Sub cmdRemove-onCl ick
d.Add "a", "Amar" 'Add some keys and items.
d.Add "b", "Bunty"
d.Add "c", "Chaman"

For i = 0 To d.Count
document.frmForm.Elernents(i).Value = a(i)

Scripting Languages End Sub

Sub cmdCompareMode-onclick
d.CompareMode = vbTextCompare
d.Add "a", "Amar" 'Add some keys and items.
d.Add "b", "Bunty"
d.Add "c", "Chaman"
d.Add "B", "Baltimore" 'Add method fails on this line because the

'letter b already exists in the Dictionary.
End Sub
-->

</SCRIPT>
<BODY>
<CENTER>
<FORM NAME="frmForm"><p>

<Input Type = "TextW><p>
<Input Type = "Textn><p>
<Input Type = "TextW><p>
<Input Type = "Button" NAME="cmdAddU VALUE="AddW>
<Input Type = "Button" NAME="cmdExist" VALUE="Exist">
<Input Type = "Button" NAME="cmdKeysW VALUE="KeysW>
<Input Type = "Button" NAME="cmdRemove" VALUE="Remove"><p>

<Input Type = "Button" NAME="cmdCompareMode" VALUE="Compare
Mode">

<Input Type = "Button" NAME="cmdKey" VALUE="KeyN>

Figure 5.1: Code Using the Dictionary Object w
Method Description
Add Method Adds a key, item pair.
Exists Method Indicates if a specified key exists.
Items Method Returns an array containing all items in a Dictionary object.
Keys Method Returns an array containing all keys in a Dictionary object.
Remove Method Removes a key, item pair.Pr0pertie.s: VBScript Dictionary Object

Add Method VBScript 1

Syntax object.Add key, item
Object The name of a Dictionary object. Required
Key The key associated with the item being added. Required.
Item The item associated with the key being added. Required.
Remarks An error occurs if the key already exists.

Refer to Figure 5.20 for the example. In the cmdAdd-onclick procedure this method
is used to add the Keys and Items to the Dictionary object.

Exists Method

Returns True if a specified key exists in the Dictionary object, False if it does not.

Syntax object.Exists(key)
Object The name of a Dictionary object. Required.

The key value being searched for in the Dictionary object. Required.

Refer to Figure 5.20 for the example. In the cmdExistspnClick procedure this
method is used to check the existence of any Key value in the Dictionary object.

Items Method

Returns an array containing all the items in a Dictionary object.

E Syntax [object.Items
Object I The name of a Dictionary object. Required.

Refer to Figure 5.20 for the example code. In the cmdAdd-onclick procedure this
method is used to retrieve the items in the array variable.

Keys Method

Returns an array containing all existing keys in a Dictionary object.

E Syntax (object.Keys
Object) The name of a Dictionary object. Required.

Refer to Figure 5.20 for example code. In the cmdKeys-onclick procedure this
,method is used to retrieve the Keys in the array variable.

;Remove Method

IXemoves a key, item pair from a Dictionary object. An error occurs if the specified
Icey, item pairdoes not exist.

object.Remove(key)
The name of a Dictionary object. Required
The Key associated with the key-item pair you want to remove from the

L
- I Dictionary object. Required

Refer to Figure 5.20 for example code. In the cmdRemove-onclick procedure this
rnethod is used to remove the item from the dictionary object.

5.9.2 VBScript Dictionary Object Properties

Just like normal objects the Dictionary object also has certain properties. These
properties can be set to any valid value and can be retrieved as and when required.

Scripting Languages Property Description
CompareMode Property The comparison mode for string keys.
Count Property The number of items in a Dictionary object.
Item Property An item for a key.
Key Property A key Syntax: VBScript Dictionary Object

Scripting.Dictionary -

CompareMode Property

Sets and returns the comparison mode for comparing string keys in a Dictionary
object.

Syntax: ol?ject.CompareMode[= compare]

The CompareMode property has the following parts:

Part Description
Object Required. Always the name of a Dictionary object.

Optional. If provided, compare is a value representing the comparison mode used Compare by hnctions such as StrComp.

The compare argument has the following settings:

Constant Value Description
VbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison.

Remarks:

Values greater than 2 can be used to refer to comparisons using specific Locale IDS
(LCID). An error occurs if you try to change the comparison mode of a Dictionary
object that already contains data.

The CompareMode property uses the same values as the compare argument for the
StrComp function.

Refer to Figure 5.20 for example code. In the cmdCompareMode-onclick procedure
this property is used to set the compare mode to Text, so that no two text keys that are
the same can be added.

Count Property

Returns the number of items in a collection or Dictionary object. This property can
only be read and cannot be set directly.

Syntax I object.Count
Object I The name of a Dictionary object. Required.

Refer to Figure 5.20 for example code. In the cmdAdd-onclick procedure this
property is used to retrieve the number of items stored in the Dictionary object.

Item Property

Sets or returns an item for a specified key in a Dictionary object. For collections,
returns an item based on the specified key. This property can be retrieved or set.

Syntax: object.Item(key) [= new item]

Part Description
object Required. Always the name of a collection or Dictionary object.
key Required. Key associated with the item being retrieved or added.

newitem Optional. Used for Dictionary object only; no application for collections. If
provided, newitem is the new value associated with the specified key.

, VBScript

I I

Remarks:

If key is not found when changing an item, a new key is created with the specified
newitem. If key is not found when attempting to return an existing item, a new key is
created and its corresponding item is left empty.

Key Property

Sets a key in a Dictionary object. If key is not found when changing a key, an error
will occur.

Syntax: object.Key(key) = newkey

The Kev uro~ertv has the follow in^ Darts:
1 Part 1 Descrintion 1
/ object (Required. Always the name of a Dictionary object.

- - - -

Key 1 Required. Key value being changed. - 1
newkey I Required. New value that replaces the specified key.

Refer to Figure 5.20 for example code. In the cmdKey-onclick procedure this
property is used to change the key value from "C" to " D .

5.10 ERR OBJECT

The VBScript Err Object contains information about run-time errors. The properties
of the Err object are set by the generator of an error - Visual Basic, an Automation
object, or the VBScript programmer.

The default property of the Err object is Number. Err.Number contains an integer and
can be used by an Automation object to return an SCODE.

When a run-time error occurs, the properties of the Err object are filled with
information that uniquely identifies the error and information that can be used to

handle it. To generate a run-time error in your code, use the VBScript Err Object
Raise Method. The Err object's properties are reset to zero or zero-length strings ("")
after an On Error Resume Next statement. The VBScript Err Object Clear Method can
be used to explicitly reset Err object. The Err object is an intrinsic object with global
scope - there is no need to create an instance of it in your code.

t Consider the following example, which displays some of the possible errors that can
be raised explicitly to generate run time errors.

<SCRIPT LANGUAGE="VBScript">

I <!--

Sub cmdSubmit-OnClick

Scripting Languages On Error resume Next

Check to see if the user entered anything.

If (Len(document.form 1 .txtAge.value) = 0) Then

MsgBox "You must enter your age before submitting."

Exit Sub

End If

Check to see if the user entered a number.

If (Not(IsNumeric(document.form 1 .txtAge.value))) Then

MsgBox "You must enter a number for your age."

Exit Sub

End If

Check to see if the age entered is valid.

If (document.form 1 .txtAge.value <= ObOr (document.form 1 .txtAge.value > 1 00)
Then

MsgBox "The age you entered is invalid."

Exit Sub

. End If

' Data looks okay so submit it.

MsgBox "Thanks for providing your age."

document.form1 .submit

End Sub

Sub cmdtype-OnCl ick

On Error Resume Next

for i = 1 to 35

Errdear

Err.Raise i

MsgBox Err.description & " - Error number - " &i

Next

End Sub
-->
</SCRIPT>
</HEAD>
<BODY bgColor="#ffffcc" Text="#000099" >
.<H l>Error Handling and validations44 1>
<P> This example demonstrates validation techniques and Error handling in
VBScri~t. </P><?B>
Please enter the age between 1 and 100. Otherwise, an error message would be

h

1 flashed on clichng the submit button.

I
<FORM NAME="form 1 ">
<TABLE>
<TR>
<TD>Enter your age:</TD>
<TDxINPUT TYPE="Text" NAME="txtAgeW SIZE="2"></TD>
</TR>
<TR>
<TD><INPUT TYPE="Button" NAME="cmdSubmit" VALUE="Submit"X/TD>
<TD></TD>
<TD><INPUT TYPE="Button" NAME="cmdtype" VALUE=" Type Of Errors
"></TD>

<TD><iTD>
</TR>

</TABLE>
</FORM>

I -
</BODY>
</HTML>

Error Handling and validations
%is example demonstrates validation techniques and Error handling in VRScript.

Please enter the age between 1 and 100. Otherwise, an error message would be flashed on clicking the
submit button.

Figure 5.2: Error Handling in VBScript

5.10.1 Methods: VBScript Err Object
T- - - - - - - - - -

clear Method -- 1 Clears allproperfysettings.
-- - ---

- . - - -- - -- -

1 Generate a run-time error. - - Raise M e t h o d _ _ - -
- - - -- -- -- ---- - - - - -- 1

WScript Err Object Clear Method

Syntax : Err.Clear
Clears all property settings of the Err object. Use Clear to explicitly clear the
Err object after an error has been handled. This is necessary, for example, when
you use deferred error handling with On Error Resume Next. VBScript calls the
Clear method automatically whenever any of the following statements are
executed:

* On Error Resume Next
* Exit Sub
* Exit Function

VBScript

I VBScript ~ r ; Object Raise Method
P

Syntax: Err.Raise(number, source, description, helpfile, helpcontext)

I The On Error Resume Next statement, also called an error handler, is a

1 procedure-level statement. It only remains in effect within the procedure that
contains the on error declaration. The VBScript interpreter, like many

Scripting Languages languages, raises an error to higher calling levels until it finds a procedure that
handles the error. If none is found, the script halts and the user is presented with
the error results by the interpreter. The Raise method is used for generating
run-time errors. All the arguments of this method are optional except Number.
However, if you use Raise, without specifying some arguments, and the
property settings of the Err object contain values that have not been cleared,
those values become the values for your error. When setting the number
property to your own error code in an Automation object, you add your error
code number to the constant vbObjectError. For example, to generate the error
number 1050, assign vbObjectError + 1050 to the number property.

5.10.2 properties: VBScript Err Object

Description Property

Returns or sets a descriptive string associated with an error. The Description
property consists of a short description of the error. Use this property to alert
the user to an error that you cannot or do not want to handle. When generating a
user-defined error, assign a short description of your error to this property. If
Description is not filled in, and the value of theVBScript Err Object Number
Property corresponds to a VBScript run-time error, the descriptive string
associated with the error is returned.

Helpcontext Property

Syntax Err.Description [= stringexpression]
Argument : A string expression containing a description of the error.
Stringexpression

in the VBScript Err Object HelpFile Property, the HelpContext property is used
to automatically display the Help topic identified. If both HelpFile and
HelpContext are empty, the value of the VBScript Err Object Number Property
is checked. If it corresponds to a VBScript run-time error value, then the
VBScript Help context ID for the error is used. If the Number property does not
correspond to a VBScript error, the contents screen for the VBScript Help file is
displayed.

Syntax Err.HelpContext [= contextID]
Argument : contextlD A valid identifier for a Help topic within the Help file.

Optional.

HelpFile Property

Sets or returns a fully qualified path to a Help File. If a Help file is specified in
HelpFile, it is automatically called when the user clicks the Help button (or
presses the F1 key) in the error message dialog box. If the VBScript Err Object
HelpContext Property contains a valid context ID for the specified file, that
topic is automatically displayed. If no HelpFile is specified, the VBScript Help
file is displayed.

Syntax I Err.HelpFile [= contextID]
I The filly qualified path to the Help file. Optional. Ar g ument : contextID

Number Property

Returns or sets a numeric value specifLing an error. Number is the Err object's
default property. When returning a user-defined error from an Automation
object, set Err.Number by adding the number you selected as an error code to
the constant vbObjectError. For example, you use the following code to return
the number 105 1 as an error code:

Syntax Err.Number [= errornumber]
Argument : errornumber An integer representing a VBScript error number or an SCODE

error value.

Source Property

Returns or sets the name of the object or application that originally generated
the error. The Source property specifies a string expression that is usually the
class name or programmatic ID of the object that caused the error. Use Source
to provide your users with information when your code is unable to handle an
error generated in an accessed object. For example, if you access Microsoft
Excel and it generates a Division by zero error, Microsoft Excel sets the
VBScript Err Object Number Property to its error code for that error and sets
Source to Excel application. Note that if the error is generated in another object
called by Microsoft Excel, Excel intercepts the error and sets Err.Number to its
own code for Division by zero. However, it leaves the other Err object
(including Source) as set by the object that generated the error.

Source always contains the name of the object that originally generated the
error - your code can try to handle the error according to the error
documentation of the object you accessed. If your error handler fails, you can
use the Err object information to describe the error to your user, using Source
and the other Err to inform the user which object originally caused the error, a
description of the error, and so forth.

Scripting Languages S ntax
Argument : A string expression representing the application that generated
stringexpression the error.

Case Study: Design a web page, which is used for accepting information regarding
stocks. Make sure the form performs the possible validations. The simple example
code below merely shows the form and accepts input but does not store the data or
perform any action.

Sub cmd-submit-OnClick
' To continue the flow if any error occurs
on Error Resume Next

If document.form 1 .TxtName.Value = "" or document.form1 .TxtEMail.Value = ""
Then
Dim MyMessage
MyMessage = "Please enter your name and e-mail address."
MsgBox MyMessage, 0, "Incomplete Form Error"

document.form 1 .TxtName.focus()
End If

' Check to see if the user entered anything.

If (Len(document.form1 .txtAge.value) = 0) Then

MsgBox "You must enter your age before submitting."
Exit Sub
document.form 1 .txtAge.focus()

End If
If (Not(IsNumeric(document.form 1 .txtAge.value))) Then

MsgBox "You must enter a number for your age."

Exit sub

End If

' Check to see if the age entered is valid.

If (document.form1 .txtAge.value < 0) Or (document.form1 .txtAge.value > 100)
Then

' MsgBox "The age you entered is invalid."
Err.clear
Err.Raise 6
Err.description = "Error - The age you entered is invalid."
msgbox Err.description

Exit Sub

158 End If

' Data looks okay so submit it.

MsgBox "Thanks for sharing your views."

End Sub
-->

<!--ENDOFADD -->
<FORM name = "form 1 " >
<CENTER>
(TABLE BORDER=8 CELLSPACING=l CELLPADDR\IG=O
WIDTH="600">(TR>(TD>
(TABLE BORDER=5 CELLSPACING=l CELLPADDING=O
WIDTH= 1 OO%>(TR>(TD>
<CENTER><H2>Sample Stock
S U ~ V ~ ~ ~ H ~ > ~ C E N T E R > ~ B > ~ F O N - P ~ T D >

</TR>4TABLD
<HR>
(TABLE BORDER=5 CELLSPACING=I CELLPADDING=O WIDTH=1000/o>
cTR> I

(TD ALIGN=RIGHP*Name:</TD>
(TDXINPUT TYPE="TEXTW NAME="TxtNameW>
</TD>
(TD ALIGN=RIGH-P*E-Mail:4TD>
(TD><INPUT TYPE="TEXTW NAME="TxtEMailW>4TD>
4TR>
(TR>cll> ALIGN=RIGH-PAddress:(/TD>
(TD><INPUT TYPE="TEXTW NAME="TxtAddressW>4TD>
(TD ALIGN=RIGH-PAge:</TD>
(TD><INPUT TYPE="TEXT" NAME="txtAgeV>4TD>
(/A>
</?'R>4TAB LE>

(TABLE BORDER=O CELLSPACING=l CELLPADDING=O
WIDTH= 1 OO%>(TR>(TD>
<CENTER>

<CENTER>
(TABLE BORDER="OW CELLPADDING="O" CELLSPACING="OW
WIDTH="75%">

4CENTER>

(TABLE BORDER=O CELLSPACING=l CELLPADDING=O>

Scripting Languages <TD>
(TABLE BORDER=O>(TR><TD VALIGN=~TOP~>

Describe your investment experience4B>
</FONT,
</TD>
</TR>
</TABLE>

</FONT,
4 T D >
</TR>
</TABLE>
4 T D >
4A>
</TR>
</TABLE>
(TABLE BORDER=O CELLSPACING=] CELLPADDING=O>
(TR>
<TD>
(TABLE BORDER=O>
<TR>
(TD>

Types o f Investments you make4B>
4 F O N P
4 T D >

<INPUT TYPE="CHECKBOX" NAME="RESULT-CheckBox-4"
VALUE="CheckBox-2">Mutual Funds

<INPUT TYPE="CHECKBOXW NAME="RESULT-CheckBox-4"
VALUE="CheckBox-3 ">Real Estate

4TD>
</TR>
</TABLE>
4TD>

</TR>
</TABLE>
GABLE BORDER=O CELLSPACING=l CELLPADDING=O>
G R >
G D >
a A B L E BORDER=O>
a R >
a D VALIGN="TOPW>

How do you buy your stocks?

</TD>
</TR>
</TABLE>
GABLE BORDER=O>(TR>(TD VALIGN="TOPW>

<!--DROP-DOWNTYPE ->
<SELECT NAME="RESULT-RadioButton-5">
<OPTION>
4OPTION>
<!-DROP-DOWN-TYPE NAME="RESULT-RadioButton-5" VALUE="Radio-0"
-><OPTION> 1) On-Line</OPTION>
<!--DROP-DOWN-TYPE NAME="RESULT-RadioButton-5" VALUE="Radio- 1 "
-><OPTION>2) Touch Tone Trading
</OPTION>
<!--DROPDOWN-TYPE NAME="RESLTLT-RadioButton-5" VALUE="Radio-2"
-><OPTION>3) Broker Assisted
</OPTION>
<!--DROP-DOWN-TY PE NAME="RESULT-RadioButton-5 " VALUE="Radio-3"
-><OPTION>4) Other</OPTION>
</SELECT>

4TD>
4TR>
</TABLE>
</I'D>
.
4TR>
.=/TABLE>
.=TABLE BORDER=O CELLSPACING=l CELLPADDING=O>
g=TR>GD>
*=TABLE BORDER=O CELLSPACING=l CELLPADDING=O>
-=TR>(II>>
*:FONT SIZE="2" FACE="Arialm >
*:B>What is your hot stock pick for this year?4B>
*cJFONT>4TD>
~ ~ R > m >
<TD>

Scripting Languages
<INPUT TYPE="TEXTW NAME="RESULT-TextField-6" SIZE="3OW
MAXLENGTH="30N>

</TD></TR>
<ABLE>
</TD>
4A>
(TD>
(TABLE BORDER=O CELLSPACMG=l CELLPADDMG=O>(TR>eD>

Stock Symbol if you know it

</TD>
</TR>aR>
e D >

<INPUT TYPE="TEXTn NAME="RESULT-TextField-7" SIZE="4"
MAXLENGTH=114">

4TD></TR>
4TABLE>
4TD>
4A>
</TR>
4 T A B L D
(TABLE BORDER=O CELLSPACMG=l CELLPADDING*>
a-R>(TD>
(TABLE BORDER=O CELLSPACING=l CELLPADDING=O>
(TR>(TD VALIGN="BOTTOMn>

Any Investment Advice for o the r s?a>

4TD>
</TR>(TR>
e D >

aEXTAREA NAME="RESULT-TextArea-8" ROWS="7" COLS=75"
WRAP="SOFTW>4TEXTAREA>
</TD></TR>
</TABLE>

5.11 SUMMARY

In this unit you have learned how to create Web pages that use VBScript. You have
learned to add logic to your Web pages as with any other programming application.
You have also learned Object support in VBScript. One of the very common and often
used objects, the Dictionary Object has been discussed in detail. Validations form an
important part of forms, which have been shown in many of the examples in this unit.
You have also learned how to use the EIT object for handling Runtime errors. You will
now be able to develop Web pages like Enquiry forms, admission forms and so on.
You have learned about the different operators and datatypes supported by VBScript
and how to use them. You have learnt about hc t ions and procedures, and how to
make your programs modular using them. Coding conventions should be followed in
order to make your programs readable and easily understandable by others. The&
include indentation of the code, naming the variables and constants and other
formatting conventions such as those for comments.

5.12 SOLUTIONS/. ANSWERS

Check Your Progress 1

1. The following code will do the job:

Scripting Languages str=trim(str)
Dim bln,ctr
bln=true
ctr- 1

exit function
end if

if(cint(str)=l or cint(str)=2 or cint(str)=3)then
IsPr ime-true
exit function
end if

for c-int(str)-1 to 2 step -1
if(cint(str)mod(ctr)=O)then
bln=false
end if
next

~ n d Function

Function ~i~ven(s t r)
str=trim(str)
if(str="Ot')then
IsEven=true
exit function
end if
if(cint(str)mod(2)4)then
IsEven=true
else
IsEven=false
end if
End Function

Sub main()
str=textl .value
Dim blnEven,blnPrime

if not(isnumeric(str))then
msgbox "Not numeric"
exit sub
end if

if(lsEven(str))then
msgbox "Even"
else
msgbox "Odd"
end if

i fTIsPr ime(str))then
msgbox "prime"
else
msgbox "not prime"
end if

-
Scripting Languages end if

next

IsPrime=bln

End Function

Function IsEven(str)
str=trim(str)
if(st15"O")then
IsEven=true
exit function
end if
if(cint(str)mod(2)=O)then
IsEven=true
else
IsEven=false
end if
End Function

Sub mysub()
str=text 1 .value

if not(isnumeric(str))then
msgbox "Not numeric"
exit sub
end if

if(rad[O).checked)then
if(IsEven(str))then
msgbox "Yes it is even"
else
msgbox "No it is not even"
end if
Exit sub
end if

if(rad(l).checked)then
if(IsEven(str))then
msgbox "No it is not odd"
else
msgbox "Yes it is odd"
end if
Exit sub
end if

if(rad(2).checked)then
if(IsPrime(str))then
msgbox "Yes it is a prime number"
else
msgbox 'Wo it is not a prime number"
end if
Exit sub
end if

End Sub

Even

<INPUT type=radio name="radW checked value="even">
Odd

I <INPUT type=radio name="radW value="oddW>
Prime

2. Following is the code:

Function IsPalindrome(str)
Dim iStart,iEnd,ctr,blnPalin
str=trim(str)
blnPalin=tme
iEnd=len(str)
iCnt=round(iEnd 1 2)
iStart-1
for ctr=l to cint(iCnt)
if(mid(str,iEnd, l)omid(str,iStart, 1))then
IsPalindrome=false
Exit Function
end if
iStart=cint(iStart)+ 1
iEnd=cint(iEnd)- 1
next
if(blnPalin=fme)then
IsPalindrome=true
else
IsPalindrome=false
end if
End Function

Sub blankStr()
sMext 1 .value
if(trim(str)="")then
msgbox "Pls. enter a number"
exit sub
end if

if(IsPalindrome(str))then
msgbox "Yes"

Scripting Languages

End Sub

Check Your Progress 3

<H2> Case: Design a web page which contains the VBScript used for
calculating subtotals,
taxes, discounts and totals as well as code used to validate user

input.4H2>

<HEAD>
cTITLDVBScript: Case Study</TITLE,

<SCRIPT LANGUAGE="VBScript">
<!-- Add this to instruct non-IE browsers to skip over VBScript modules.
Option Explicit

Sub crndCalculate-OnClick
Dim AmountofDiscount
Dim Amountoflax
Dim DISCOUNT-LIMIT
Dim DISCOUNT-RATE
Dim SubtotalBefore
Dim SubtotalAfter
Dim TAX-RATE
Dim Totalcost

If (Len(Document.fnnCaseStudy.txtQuantity.Value) = 0) Then
MsgBox "You must enter a quantity."
Exit Sub

End If

If (Not IsNumeric(Document.frmCaseStudy.txtQuantity.Value)) Then
MsgBox "Quantity must be a numeric value."
Exit Sub

End If

If (Len(Document.fnnCaseStudy.cmbProducts.Va1ue) = 0) Then
MsgBox "You must select a product."
Exit Sub

End If

DISCOUNT-LIMIT = 1000
DISCOUNT-RATE = .l 0
TAX-RATE = 0.06 .

Calculate the subtotal for the order.
SubtotalBefore = Document.fnnCaseStudy.txtQuantity.Value *
Document.hCaseStudy.IblUnitCost.value

If (Subtota&£ore > DISCOUNT-LIMIT) Then
A r n o u n t o f D i ~ n t = SubtotalBefore * DISCOUNT-RATE --

Else
AmountofDiscount = 0

End If
r a

SubtotalAfter = SubtotalBefore - AmountofDiscount VBSeript

' Calculate taxes and total cost.
Amountoffax = SubtotalAfter * TAX-RATE
TotalCost = SubtotalAfier + Amountoffax

Display the results.
Document.frmCaseStudy.lblSubtotalBefore.value = SubtotalBefore
Document.frmCaseStudy.IblDiscount.value = AmountofDiscount
Document.frmCaseStudy.IblSubtotalAfier.value = SubtotalAfter
Document.frmCaseStudy.lblTaxes.value = Amountoffax
Document.frmCaseStudy.Ib1TotalCost.value = TotalCost

Sub cmdsubmit-onclick
Submit this order for processing.
MsgBox "Your order has been submitted."
Document.frmCaseStudy.Submit

Sub cmbProducts-onchange()

Select Case Document.frmCaseStudy.cmbProducts.Selected1ndex

Document.frmCaseStudy.lblUnitCost.value = 1590

Document.frmCaseStudy.Ib1UnitCost.value = 880

Document.frmCaseStudy.IblUnitCost.value = 1940

Document.frmCaseStudy.lblUnitCost.value = 0

</SCRIPT,

<FORM NAME="frmCaseStudy">

(TD>Mon itor:4B></TD>
-

<SELECT NAME = "cmbProducts">
<OPTION VALUE ="Ow >4OPTION>
<OPTION VALUE =" 1 " >Item 14OPTION>
COPTION VALUE ="2">Item 240PTION>
<OPTION VALUE ="3">Item 340PTION>

4 S E L E C P

CTD>Quantity:4B></TD>

<INPUT TYPE = "TEXT" NAME ="txtQuantityW >

Scripting Languages a D >
a R >
cTR>

(TD><INPUT TYPE="ButtonW NAME="cmdCalculate"
VALUE="Calculate
Costm>4TD>

c T D > a D >
a R >
cTR>
cTD>Unit C o s t : a > a D >
cTD>

<INPUT TYPE = "TEXT" NAME ="lblUnitCost" >
a D >

a R >
cTR>
cTD>Subtotal before discount:43>dTD>
cTD>

<INPUT TYPE = "TEXT" NAME ="lblSubtotalBefore" >
a D >

a R >
(TR>
cTD>Discount:43>4TD>
cTD>

<INPUT TYPE = "TEXT" NAME = "1blDiscount" >
a D >

a R >
cTR>

cTD>Subtotal after discount:43>4TD>
cTD>

<INPUT TYPE = "TEXT" NAME ="lblSubtotalAfter" >
a D >

a R >
cTR>
(TD>Taxes:43>4TD>
cTD>

<INPUT TYPE = "TEXT" NAME ="lblTaxes" >
a D >

dTR>
cTR>
cTD>Total Cost:43>4TD>
cTD>

<INPUT TYPE = "TEXT" NAME ="lblTotalCost" >
a D >

a R >
cTR>
(TD><INPUT TYPE="ButtonW NAME="cmdSubrnit"

VALUE="Submit
OrderW>4TD>

cTD>QI'D>
a R >

-ABLE>
;/FORM>

43ODY>

4 H T M D

(TITLDABC Software's Registration Page4TITLD
</HEAD>
<BODY BGCOLOR=WHITE> <CENTER>
<FONT SIZE=7 FACE="ArialM COLOR=BLUDABC

I Registration4FONP
, 4CENTER>

<HR COLOR="BLUEfl>

I Thank you for taking the time to
download and test our new product. In order to serve you well, we ask that you
submit the following information before downloading
<FONT FACE=ARIAL COLOR=BLUDABC</FONPsoftware.
<HR COLOR=RED WIDTH=75%> <CENTER>
<TABLE BORDER BORDERCOLOR="BLUE">
(TR>
a D ALIGN=RIGHP*Narne:dTD>
(TDXINPUT TYPE="TEXTW NAME="TxtNameW>
<KD>
4TR>
(TR>
(TD ALIGN=RIGHT>*E-Mai l:4TD>
<TD><INPUT TYPE="TEXTW NAME="TxtEMailn>4TD>
4 T 1 e
(TR>(TD ALIGN=RIGHPAddress:</TD>
<TD><INPUT TYPE="TEXTn NAME="TxtAddressW>4TD>
4TR>
(TR>
<TD ALIGN=RIGHPCity:</TD>
<TD><,INPUT TYPE="TEXTn NAME="TxtCityW>4TD>
4TR>
(TR>
(TD ALIGN=RIGHPState:(/TD>
(TD><INPUT TYPE="TEXTn NAME="TxtStateV>4TD>
</TR>
(TR>
<TD ALIGN=RIGHPZip:4TD>

i
(TD><INPUT TYPE="TEXTN NAME="TxtZipW>4TD>
4TR>
<TR>

(TD ALIGN=RIGHPCountry:(/TD>
<TD><INPUT TYPE="TEXTM NAME="TxtCountry">(ITD>
</TR>

I (TR>
(TD COLSPAN=2 ALIGN=CENTER><INPUT TYPE="SUBMITW
NAME="Btn 1 " VALUE="Send It! ">
 * Required
Field4TD>
<KR>
<ABLE>
<HR COLOR=RED WIDTH=75%>
Thanks!
<SCRIPT LANGUAGE="VBScript">
<!--
Sub Btnl-OnClick
If TxtName.Value="" Or TxtEMail.Value="" Then
Dim MyMessage
MyMessage = "Please enter your name and e-mail address."
MsgBox MyMessage, 0, "Incomplete Form Error"

Scripting Languages

